
CATION PAGE It AWW

AM AD- A279M 646%
F- - I-

940325S1.11346, AVF.: 94ddc500_2A 5 UDN

DDC-I, DACS Sun SPARC/SunOS to-680x0 Bare Ada Cross Compiler
System (BASIC-MO DE), Version 4.6.9
. iwtnors:

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PERORMING OfIGNIZATION NAME(S) AD94-15728

Nalaa Ag~uti e R6 t andards and Technology MEhiiII 1I11i
Gaithersburg, Maryland 20899
USA

t. spoNsoRINGtJONrTORING AGENCY NAME(S) ANDiv tLbK#*?MTRN

Ada Joint Programn Office AEC

The Pentagon, FRn 3E11 ISC
Washington. DC 20301-3080

1 1. SUPPLEMENAY

12m. DISTRIBUTIOIA-VAILAILITY T12b. DISTRIBUTIOIN

Approved for Public Release; .. distribution unlimited

Host: Sun SPARCstation IPX (under SunOS, Release 4.1.1)
Target: Lynwood J435TU (68030) (bare machine)

DTIC
ELECTE

8MAY238 1994U
14. BUBJECT w15. ERO

tAda programiing linguage, Ada Compler Validation Summnary Report, A6
~ A 3 pb Val. Testing, Ada Val. Office, Ada Val. ci

18 .EUR 19 SEC1 . f0, LOAITATION OF
CLA3SIFICATION C1 ASFICATION
UNCLASFIED UINCLASSIFIED UNCLASSIFED UNCLASSIFED

swrdwd pw Fgm . (Rev. 2419)

94 5 25 0O1&~C QUA=sP~~ Prffdb ANSI S1

AVF Control Number: NIST94DDC500_2A_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number 940325S1.11346
DDC-I

DACS Sun SPARC/SunOS to 680x0 Bare Ada
Cross Compiler System (BASIC MODE), Version 4.6.9

Sun SPARCstation IPX =>
Lynwood j435TU (68030) (Bare Machine)

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.
Accesion FCr
NTIS CRA&I
DTiC TAB
Una.wiounce.d Q

Juistification

By
Dist. ibution I

Availability Cctes

Oist SAvapecialor

AI

AVF Control Number: NIST94DDC500_2A_l.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/SunOS to 680x0 Bare Ada
Cross Compiler System (BASICNODE),
Version 4.6.9

Host Computer System: Sun SPARCstation IPX running under SunOS,
Release 4.1.1 .

Target Computer System: Lynwood J435TU (68030) (Bare Machine)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11346 is awarded to DDC-I. This certificate expires 2 years
after ANSI/NIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validatiod/Tao W Ada Valadationility
Dr. David K. J6Sfe Mr. L. Arnold &ihnson
Chief, Information y tems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Naryland 20899
U.S.A.

Ada rganizatonAda Joint Program Office
Dire or, ter & Software David R. Basel

Enganeerinq Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

NIST94DDC500 2A 1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Customer: DDC-I

Certificate Awardee: DDC-I

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/SunOS to 680x0 Bare Ada Cross Compiler
System (BASICMODE), Version 4.6.9

Host Computer System: Sun SPARCstation IPX running under SunOS, Release

4.1.1

Target Computer System: Lynwood j435TU (68030) (Bare Machine)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

'-//.C, ' .., _ __

Customer Signature Date
Company DDC-I
Title

Ce~iXcatd Awardee Signature Date
Company DDC-I
Title

TABLE OF CONTENTS

CHAPTER 1 1-1
INTRODUCTION. s * ... s ... o* . .• 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES o ... 1-2
1 .4 DEFINITION OF TERMS 1-3

CHAPTER 2**..* o.2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 9.... o....* s 2-1
2.2 INAPPLICABLE TESTS 2-1
2 .3 TEST MODIFICATIONS o o 2-3

CHAPTER 3 99999. o3-1
PROCESSING INFORMATION 3-1

3 . 1 TESTING ENVIRONMENTs..* 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A o..................... A-1
MACRO PARAMETERS A-1

APPENDIX B o............. B-1
COMPILATION SYSTEM OPTIONS B-i
LINKER OPTIONS .. B-2

APPENDIX C * C-1
APPENDIX F OF THE Ada STANDARD C-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard (Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to (Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Proaramming Langaae,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UG89] Ada Compiler Validation CaDabilitv User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be

replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.
Inapplicable Test A test that contains one or more test

objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].
Validation The process of checking the conformity of an

Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
AD1B08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2Bl5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

2-2

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAMEERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2-3

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 72 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AO1A B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83AO7A B83AO7B B83A07C B83EO1C
B83E01D B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
895077A B97103E B97104G BA1001A BA1101B BC1109A BC1109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAM-ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CD2A83A was graded passed by Test Modification as directed by the
AVO. This test uses a length clause to specify the collection size
for an access type whose designated type is STRING; eight

2-4

designated objects are allocated, with a combined length of 30
characters. Because of this implementation's heap-management
strategy and alignment requirements, the collection size at line 22
had to be increased to 812.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This fs acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implew-'tation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3542

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 524
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 524 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+fl

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the Sun SPARCstation IPX and is used for
downloading the executable images to the target Lynwood J435TU
(68030) (Bare Machine) and to capture the results. The DDC-I Debug
Monitor runs on the target Lynwood J435TU (68030) (Bare Machine)
and provides communication interface between the host debugger and
the executing target Lynwood J435TU (68030) (Bare Machine). The
two processes communicate via ethernet to download and via RS-232
to upload.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-nowarning -list

The linker options invoked explicitly for validation testing during
this test were:

al -cpu 68030
-fpu 68882
-ramnbase Oxll00000
-ram 0xl000000, Ox3fffff

3-2

-main stack size-OxlOOOOO
-tcb 30
-ucC adalynwood.slb

Test output, compiler and linker listings, and Job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-sit, by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line lengtlh, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada itrlng aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 126 -- Value of V

$BIGIDI (1..V-1-> 'A', V -> '1')

$BIGID2 (l..V-l-> 'A', V => '2')

SBIGID3 (l..V/2-> 'A') & '3' & (l..V-l-V/2-> 'A')

SBIGID4 (l..V/2-> 'A') & '4' & (l..V-I-V/2 W> 'A')

$BIGINTLIT (l..V-3 > '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 """ & (l..V/2 => 'A') & '""'

$BIGSTRING2 """ & (1..V-l-V/2 => 'A') & '1' & '""'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (l..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '""' & (l..V-2 -> 'A') & 1'"'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACCSIZE :32
ALIaGNENT :4
COUNT LAST 2 147 483 647
DEFAULTMEM SIZE 2#l#E32
DEFAULTSTOR UNIT 8 8
DEFAULTSYS NAME DACS 680x0
DELTA D-C -- 2#l.O#E-31
ENTRY ADDRESS : FCNDECL. ENTRY. ADDRESS
ENTRYADDRESS1 : FCNDECL. ENTRY. ADDRESS1
ENTRYADDRESS2 : FCNDECL.ENTRY.ADDRESS2
FIE1D LAST : 35
FILE TERMINATOR : '

FIXEDNAME : NOSUCHTYPE
FLOAT NAME : NO SUCHTYPE
FORM STRING : "
FORMSTRING2

CONNOT RESTRICT FILE-CAPACITY"
GREATER THANDURATION : 100000.0
GREATER THAN DURATION BASE LAST : 200000.0
GREATERTHANFLOAT BASE LAST : 16#1.0#E+32
GREATERTHAN_ FLOAT _ SAFE LARGE : 16#5.FFFFFO#E+31
GREATER THAN SHORTFLOATSAFELARGE: 16#5.FFFFFO#E+31
HIGH PRIORITY : 24
ILLEGALEXTERNAL_FILENAME1 : /NODIRECTORY1/FILENAME1
ILLEGAL EXTERNAL FILENAME2 : /NODIRECTORY1/FILENAME2
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATEPAGELENGTH : -1
INCLUDEPRAGkAl

PRAGMA INCLUDE ("A28006D1.ADA")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.ADA")
INTEGER FIRST : -2147483648
INTEGERLAST : 2147483647
INTEGER LAST PLUS 1 : 2147483648
INTERFACE LANGUAGE : AS
LESS THAN DURATION : -75000.0
LESS THAN DURATIONBASEFIRST : -131073.0
LINE TERMINATOR : I I
LOW PRIORITY : 1
MACHINECODESTATEMENT

AAINSTR'(AA_EXITSUBPRGRM,0,0,0,AA_INSTRINTG'FIRST,0);
MACHINE CODE TYPE : AA INSTR
MANTISSA DOC : 31
MAXDIGITS : 15

A-2

MAX INT : 2147483647
MAX lINT PWUS_1 : 2147483648
Ki*INflI : -2147483648
NAME : NOSUCH TYPE AVAILABLE
KANELIST : DkC-S_68"dx0
NAlMESPECIFICATIONi

/houe/sun2/ada/6803 O/teat/wrk/X2 120A
NAMESPECIFICATION2

/houie/sun2/ada/68030/test/vrk/X2 120B
NAMESPECIFICATION3

/home/sun2/ada/68030/test/wrk/X3 119A
NEG BASED INT : 16#FOOOOOOE#
NUW-m SI1ZE : 2097152
NEW STO7R UNIT :8
NEW -SYS NAME DACS_680x0
PAGETERMINATOR
RECOR-DDEFINITION

RECORD - INSTRNO: INTEGER ;ARGO: INTEGER ;ARG1 :INTEGER;
AEG : INTEGER ;ARG3 :INTEGER; END - RECORD;

RECORD NAME : AAINSTR
TASKSI1ZE : 96-
TASKSTORAGESIZE : 1024
TICK- : 2#1.0#E-14
VARIABLE ADDRESS : FCNDECL. VARIABLE-ADDRESS
VARIABLE ADDRESS 1 :FCNDECL. VARIABLE ADDRESS 1
VARIABLE ADDREbiS2 : FCNDECL. VARIABLEADDRESS 2
YOURPRAGMA : NOFLOAT

A-3

APPENDIX 8

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and inserts the
zg---wA objects into the cuinr subllbrary. Compiler options are provided to allow the user
cotrol of opmlzadn. run-time checks, and compiler input and output files such as list files,
con uigmreon file the program library used, etc

The hu to the compiler consi of te source Me, the configuratio file (which controls the
fonat of the lis file), and the compiler options. Section 5.1 provides a list of all compiler
options, ad Section 5.2 describes the xoun= and configuration files.

Output consi of an object placed in the program library, diagnostic messages. and Optional
listin e configuri file and the compiler options specify the format and contents of the
list informationL Output is described in section 5.3. If any diagnostic messages are produced
duraig the compilation, they are output to the diagnostic file and on the current output file. The
diagnostic fie and the diagnostic messages ae described in Section 5.3.2.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the pogram library. and an intemal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 The Invocation Comuand

Invoke the Ada compiler with the following command to the SunOS shell:

$ ada (<option>) <source-or-unit>

where the options and parameters ame:

35

DACS 680x0 Bare Ada Cros Compiler System - User's Guide
The Ada Compiler

OPTION DESCRIUPTION REFERENCE

-[m]utonlidne Automatic inline expansion of local subprograms. 5.1.1
bo- y Compile body unit from source saved in library. 5.1.2

-check Specifies rnm-time constraint checks. 5.1.3
-amfill"11tlon-flt Specifies the configurtio file used by the compiler 5.1.4
-.[=*bug Generate debug information, 5.1.5
-[miV a Generate code for the floating point co-processors 5.1.6
4Enay Specifies program library used. 5.1.7
-[uoolst Writes a source liting on the list file. 5.1.8
-mode Protection mode. 5.1.9
-Amine Specifies compiler optimization. 5.1.10
-[m110mve_.sour Inserts source text in program library. 5.1.11
qCompile specification unit from source saved in library. 5.1.12

-[,neoyrbose Displays compiler pmgres. 5.1.13
-[noJwaruniP Display warning from the compiler 5.1.14
.[1m100ef Creates a cross reference listing. 5.1.15

source.-or-unlt> The name of the source file or unit to be compiled. 5.1.16

Examples:

$ ada -list testpzog

This example compiles the source file testprogada and generates a list file with the name

$ ada -Library my..lbzary test

This example compiles the source file test.ada into the library my-library.

Default values exist for most options as indicated in the following sections. Options and option
keywords may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options, but not for option keywords. When conflicting options are given
on the command line, (e.g. -list and -molist) the last one is used.

S.± 4-moauto-..nine

-auti-irdhne LOCAL I GLOBAL
-nowgojidnel (defaukt)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occumrs if the mbprogrun has less than 4 object declarations and less than 6 statements, and if the

wgram fulfills the equirements defined for pragma INLINE (see Section B.2.3). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subpograms from other
units.

36

DACS 680x0 Bare Ada Ctos Compiler System - User's Guide
The Ada Compiler

A warning is issued when inline expansion is not achieved.

512-body

When using ahe qdon -body the Ada complier will itcompile the body of de unit specified as
;u-amme-r to the Ada ompier (see section 5.1.16) into Oie current sublibrary. The source code
saved In the program library at the previous compilation of the body is used as the source code
to be cmpled. If no sure code is present or the body for OtR unit does not exist in the library,
am mom message is issued. This option is primarily for use by the Ada Recompiler (see chapter
7).

5.13 -check

-k [<keyword> = ON I OFF (,<keyword> = ON I OFF }]
-check ALL--ON (default)

-chat specifies which nm-ime checks should be perfonred. Setting a run-time check to ON
enables the check, while setting it to OFF disables the check. All rnm-time checks are enabled by
defalt. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.
DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.
INDEX Index check.
LENGTH Arry length check.
OVERFLOW Explicit overflow checks.
RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

S.IA -con atinle

-amfliguraton.Jile dfe-spec>
-csum flgationAflle coflig (default)

"This option specifies Oie configuration file to be used by the compiler in the current compilation.
The configuraion file allows Ohe user to format compiler listings, set error limits, etc. If the
opi o is omitted Oie configuration file config located in the same directory as the Ada compiler
is used by default. Section 5Z.2 contains a description of the configuration file.

37

DACS 680x0 Bare Ada Cross Compiler System - User's Guide

The Ada Compiler

S.1. -.noldebug

-modebug (default)

Gnrt debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-I Ada Symbolic Cross Debugger. See Section 6.2.4.

5.1.6 -[noJIpu

-fpu (default)
-[nolfpu

If the -fpu option is specified the compiler will assume that a floating point co-processor is present
and generate code accordingly. If the -nofpu option is specified the compiler will assume that a
floating point co-processor is not present, and will not generate instructions for ,he co-processors.
Floating point operations are instead implemented by calls to run time library.

S.1.7 -library

-abrary dlie-spec>
-library $ADALIBRARY (default)

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary, the current
programn library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environmental variable ADA-LIBRARY
is used as the curent sublibrary (see Chapter 3). Section 5.4 describes how the Ada compiler uses
the library.

5.S1 -[nojlist

.1st
-mnost (default)

41st specifies that a source listing will be produced. The source listing is written to the list file,
which has the name of the source file with the extension Jis. Section 5.3.1.1 contains a description
of the source listing.

If -moist is active, no source listing is produced, regardless of LIST pragmas in the program or-xm• messages produced.

38

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

5.13 -mode

-mode ALL I BASIC I SECURE
-mode ALL (default)

The compiler generates code to execute in a non-protected BASIC mode, or in a protected
SECURE mode according to the -mode option. Code can be generated to run in all protection
modes by specifying ALL, this way protection mode can be decided at link time. The fastest and
most compact code is generated by selecting the protection mode in which the program shall
execate. Please refer to chapter 10 for details on protection modes. Mode SECURE is only usable
if the prgram will be linked for a Motorola 68030 or 68040 processor.

S.1.iq -opthmi

-optimiu [<keyword> = ON I OFF (,<keyword> = ON I OFF }
-apt•mize ALL-OFF

This option specifies which optimizations will be performed during code generation. The possible
keywords are:

ALL All possible optimizations are invoked.
CHECK Eliminates superfluous checks.
CSE Performs common subexpression elimination including common address

expressions.
FCT2PROC Change function calls returning objects of constrained array types or

objects of record types to procedure calls.
REORDERING Transforms named aggregates to positional aggregates and named

parameter associations to positional associations.
STACKHEIGHT Performs stack height reductions (also called Aho Ullman reordering).
BLOCK Optimize block and cPJ! frames.

Setting an optimization to ON enables the optimization, while setting an optimization to OFF
disables the optimization. All optimizations are disabled by default. In addition to the optional
opimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

5.1.11 -[no]save.source

-uve-aource (default)
-no11mve'-source

When -mve.souree is specified, a copy of the compiled source code is placed in the program
library. If -noave-source is used, source code will not be retained in the program library.

Using -fmave.source, while helping to keep library sizes smaller, does affect the operation of
the recompiler, see Chapter 7 for more details. Also, it will not be possible to do symbolic
debugging at the Ada source code level with the DACS-680x0 Symbolic Ada Debugger, if the
source code is not saved in the library.

39

DACS 68Mx0 Bare Ada Cross Compiler System - Uwsr's Guide
The Ada Compiler

5.1.12 .spedflkatlon

When using the option -specfleadon the Ada compiler will recompile the specification of the unit
specified as parameter to the Ada compiler (see section 5.1.16) into the current sublibrary. The
source code saved in the program library at the previous compilation of the specification is used
as the source code to be compiled. If no source code is pesent or the specification for the unit
does not exist in the library, an error message is issued. This option is primarily for use by the
Ada Recompiler (we chapter 7).

5.1.13 -[nolverbose

.verbose
-noverbose (default)

When -verbose is specified, the compiler will output information about which pass the compiler
is currently runnming, otherwise no information will be output.

5.1.14 4nolwarnings

-warnings (default)
.nowanilngs

All warings from the Ada Compiler awe displayed when option -warnings is specified. All
compiler warnings are suppressed when -nowarnings is specified. See Section 5.3.2 for a
description of how and when warnings are reported from the Ada Compiler.

5.1.15 -[noliref

.Mref
-noxref (default)

A cross-reference listing can be requested by the user by means of the option -ief. If the -xref
option is given and no severe or fatal errors ame found during the compilation, the cross-refenmce
listing is written to the list file. The cross-reference listing is described in Section 5.3.1.3.

5.1.16 The Source or Unit Parameter

<source-or-unit>

This parameter specifies either the text file containing the Ada source text to be compiled or,
when option -body or -specifkation is used, the name of the unit to be compiled. When
Interpreted as a file name. the file type ".ada" is assumed by default, if the file type is omitted
in the source file specification.

40

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

5.2 Compiler Input

Input to the compiler consists of the command line options, a source text file and, optionally, a

5.2.1 Source Tet

The user submits one file containing a source text in each compilatior.

Thi format of the source text must be in ISO-FORMAT ASCI. This format requires that the
source text is a sequence of ISO characters (ISO Standard 646), where each line is terminated by
either one of the following termination sequences (CR means carriage return, VT means vertical
tabulation, LF means line feed, and FF means form feed):

"* A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

"* Any of the characters VT, LF, or FI immediately preceded and followed by a sequence
of zero or more CRs.

In general. ISO control characters are not permitted in the source text with the following
exceptions:

"* The horizontal tabulation (HM) dcaracter may be used as a separator between lexical units.

"* LF, VT, FF, and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see Section 5.22). The control characters CR, VT, LF, and FF are not
considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

5.2 Configuration File

Certain processing characertcs of the compiler, such as format of input and output and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SunOS text file. The contents of the configuration
file must be an Ada positional aggregate, written on one line, of the type
CONFIGURATIONRECORD, which is described below.

The configuration file (confei is not accepted by the compiler in the following cases:

"• The syntax does not conform with the syntax for positional Ada aggregates.

"* A value is outside the ranges specified.

"* A value is not specified as a literal.

"* LINESYPERPAGE is not greater tdun TOP-MARGIN + BOTrOMMARGIN.

41

DACS 680x0 Base Ada Cross Compiler System - User's Guide
The Ada Compiler

The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on current
output and the compilation is terminated.

Below is a description of the record whose values must appear in aggregate form within the
r• isuradton file. The record declaratim makes use of some other types (given below) for the
sake of clarity.

type CONFIGURATION-RECORD is
record

IN-FORMAT : INFORMATTING;
OUT-FORMAT : OUTFORMATTING;
ERROR-LIMIT : INTEGER RANGE 1..32-767;

end record;

type INPUT-FORMATS is (ASCII);

type INFORMATTING is
record

INPUT-FORMAT : INPUT-FORMATS;
INPUTLINELENGTH : INTEGER range 72..250;

end record;

type OUTFORMATTING is
record

LINESPERPAGE : INTEGER range 30..100;
TOP-MARGIN : INTEGER range 4.. 90;
BOTTOM-MARGIN : INTEGER range 0.. 90;
OUTLINELENGTH : INTEGER range 80..132;
SUPPRESSERRORNO : BOOLEAN;

end record;

The outformatting parameters have the following meanig:

1) LINESPEIPAGE: specifies the maximum number of lines written on each page
(including top and bottom margin).

2) TOP-MARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTI7OMMARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the pbogram is LINES
PER-PAGE - TOP-MARGIN - BOTTOM-MARGIN.

4) OUTLINELENGTH: specifies the maximum number of characters written on each line.
Lines longer than OUTLINELENGTH are separated into two lines.

5) SUPPRESS..ERRORNO: specifies the format of error messages (see Section 5.32.2).

42

DACS 6Ox0 BaDe Ada Cros Compiler Syem - User's Guide
The Ada Compiler

The name of a user-supplied configuration file can be passed to the compiler through the
-md.flradouu.. option. DDC-I sulfies a default configuraton fil (conf) with the following

((ASCII, 126), (485,3100,FALSE), 200)

Top. I
margin

Lines
per
page

Bottom I
margin

Out-line-length

Figure 5.1: Page Layout

5.3 Compiler Output

The compiler may produce output to the list file, the diagnostic file, and the curnrm output file.
It also updates the program library if the compilation is successful The present section describes
the ext output in the iree files mentioned above. The updating of the program library is described
m Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written to the list file,
if the option 4lst is active.

2) A compilation summary is written to the list file, if 41st is active.

43

DACS 680x0 Bare Ada Croms Compiler System - User's Guide
The Ada Compiler

3) A cou-mifrence listing is written to the list file, if -. ref is active and no severe or fatal
enmn have been detected dunng the compilation.

4) If thee ine my diagnostic messages, a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than warnings am wdtten on the curent output file.

5.3l The List File

If the user requests any listings by specifying the options -. st or -=ref, a new list file is created.
The name of the list file is identical to the name of the source file except that it has the file type
"JisTM. The file is located in the curent directory. If any such file exists prior to the compilation,
the file is deleted.

The list file may include one or more of the following parts: a source listing, a cross-reference
listing, and a compilation summary.

The pats of the list file are separated by page ejects. The contents of each pan are described in
the following sections.

The format of the output to the list file is controlled by the configuration file (see Section 52.2)
and may therefore be controlled by the user.

53.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occunrence of LIST pragmas
and the number of objectionable lines.

"* Parts of the listing can be suppressed by the use of LIST pragmas.

"* A line containing a construct that caused a diagnostic message to be produced is printed
even if it occurs at a point where listing has been suppressed by a LIST pragma.

5•3.2 Compilation Sumury
At the end of a compilation, the compiler produces a summary that is output on the list file if the

option -N is active.

The summary contains infonnation about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

44

DACS NSOxW Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

2) MTw number of diagnostic messages produced for each class of severity (see Section 5.3.2.1).

3) Which optiom wae active.

4) The full name of the source file.

5) The NO .me of the curnm sublibrazy.

6) lite amber of source xt lines.

7) The size of the code produced (specified in bytes).

8) Elapsed red time and elapsed CPU time.

9) A "Compilaon leminated" message if the compilation unit was the Iast in the compilation
or "Compilaon of next unit initiated" otherwise.

53.13 Cross-Refe'ence Listing

A cross-reference listing Is an alphabetically sorted list of identifiers, operators and character
literals of a compilation uniL The list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurrence of multiple
entries for the same identifier.

For instaniations of generic units, the visible declarations of the generic unit are included in the
cm-reference listing immediately after the instantiation. The visible declarations are the
subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference infonnation will be produced for every constiftuen character literl for string
lieals.

The following are not included in the cross reference listing:

" Pragma identifiers and pragma argument identifiers.

"* Numeric literals.

"* Record component identifiers and discriminant identifiers. For a selected name whose
selector denotes a record component or a discriminant, only the prefix generates
coss-refeence information.

"* A parent unit .me (following the keyword SEPARATE).

45

DACS 680x0 Bane Ada Cross Comp/ler System - User's Gluide
The Ada Compiler

Each entry in the cross-reference listing contain:

* The Identifier with at most 15 caatr. If the identifier exceeds 15 characters a bar ("l")
is written in the 16th positdon and the rest of the character are not printed.

• The place of the definition, ie. a line number if the emity is declared in the curnen
compilation unit, otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaration.

* The line numbers at which the entity Is used. An asterisk ("*') after a line nmnber indicates
an assigrnment to a variable, initialization of a costant, assignments to functions, or
user-defined operators by mews of REUR statements.

s.3.2 The Dianstic€ JiI

The name of the diagnostic file is identica to the name of the source file except that it hats the
file type ".er"'. It is located in the current directory. If any such file exists prior to the
compilation the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each preceded by a line
showing the number of the line in the source text causing the message, and followed by a blank
line. There is no separation into pages and no headings. The file may be used by an interactive
editor to show the diagnostic messages together with the erroneous source text.

5.3.2.1 DiaglnOSti Messages

The Ada compiler issues diagnostic messages to the diagnostic file. Diagnostics other than
wwarnng also appear on standard outut If a source text listing is required, the diagnostics are
also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not relate to any paricular line are placed at the top of the lisfing. The lines
are ordered by increasing source line smmbers. Line number 0 is assig~ned to messages not related
to any particu•a line. On standard output the messages appear in the order in which they are
geeatred by th copie.

The diagnosti mesagues are classified according to their severity and the compiler action taken:

Warning:. Reports a questionable co.ronet or an error that does not influence the meaning of the
pi05rB. Wamrnsns do WI hinder the generatio of object code.

Exml: A warning will be issued for contruts for which the compiler detects that
they will raise CONSTRAINT_.ERROR at rnm time.

Snt~Repout an inlegi constuc In the source prognm. Compilation continues, but no object

code wi be generad.

46

DACS N8OWO Bare Ada Cns Compiler System - Uses Guide
TMe Ada Compiler

XA : most syntax errors; most static semantic errors.

Severe Rmports an enr which caom the compilatin to be terminated immediately. No object
en•r code is genaed.

Ezample A severe ero messae will be Issued if a library unit mentioned by a WITH
cla is not ; P esent in the cumre pwrgm libraty.

Fatal Repons - error in the compiler system itself. Compilation is terminamed immediady
MCI n md no object code is produced. The user may be able to cirmumvent a fatal enr by

conecting the progs or by nPlacn presogm onmucts with alternatives. Pleke
Inform DDC-I about the occurrnet of fatal erom.

The detmion of more enras than allowed by the number specified by the
K•OIdMIT parameter of the configuraion file (see section 5.2.2) Is also considend a severe

5.32 Format and Coatat of Dhostm c Mesges

For certain syntactically incorrect cmtuct the diagnostic message consists of a pointer line and
a text line, in other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol A) to the offending symbol or to an illegal

character.

Mxe text line contains the following informaion:

" The diagnostic message identification "*"

" The message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error.

W: warning
E: error
S: seven eror
F: fatal error

Z is an integer which together with the message number X uniquely identifies the compiler
location that generated the diagnostic message; Z is of importance mainly to the
compiler maintenance team - It does not contain information of interest to the compiler
user.

The mess code (with the exception of the severity code) will be suppressed if the
pM0ameter SUPPRESS..-MRORNO in the configuration file has the value TRUE (see
section 5.1.2).

47

DACS 68Mx Bane Ada Cross Compiler System . Users Guide
The Ada Compiler

Mefl message text; the text may include ane context dependent field dha contains the name
of die offewming symabol; ff dhe .me of the offending symbol is longer thuri 16 characters
only 6.e fAm 16 charactes a= smown

Exampkes of diagnostic message.

IBM1S-3: Warning: Exception COMtSTUUUT...EROR will be raised here

**3203-2: Naer 09J does not denote a type

' 5353-0: Expression in return statemnt missing

**15068-0: Specification for this package body not present in the library

533 Ratur Stafti.

'flu A& Compiler's return value will have one of the following values.

&0 Ma compilation was successful, warnings may have bee generated.
1,2: Fatal Internal eamo in the run-time system. Please contact DDC-I engineers.
3,4: Errous in command line options. compiler generates an error message indicating the

error.
5: Fatal internal error in the compiler. Compiler generates an error message indicating the

error. Please contact DDC-I engineers.
6: Severe error during compilation. e~g. a unit mentioned by a WITH clause is not present

in the library. Compiler generates an errr message indicating the enr.o
7: Error during compilation, ci, most syntax errors. Compiler generates an error message

indicating the ener.

SA Mwe Propram Librar

Ibis section briefly describes how the Ada compiler changes the progrm library. For a more
genera description of the progrm library the user is referred to Chapter 4.

ThU compiler is allowed to rea frm all sbi~braries constituting the current programn library, but
only the curme sublibraty may be changed.

5.4. CorrectC.palo

In ft holowIng examples It is assumed thait the compilation units ame correctly compiled, i.e. that
no conm we detected by the compiler.

48

DACS 6800 De Ada Crom Compiler Sysftm - User's Guide
The Ada Compiler

d dof a library un which Is a declarmlon

If a declaation uit of the same mie exists in the cumt sublibmry, it is deleted together with
its body unit nd possle subunits. A new declaration wit is inserted in the sublibrary, together
with an empty body unit.

C a lbrary unit which is a subprogram body

A subpraom body In a compilation unit Is trated as a secondary unit if the cmuu sublibrary
contai a subprogram declaration or a geneic subpgram declaration of the same name and this
declaration wit is not invalid. In all other cases it will be treated as a library unit, i.e.:

- When there is no library unit of that name.

* When dhe is an invalid declaration unit of that name.

* When there is a package declaration, generic package declaration, an instantiated package,
or subpogram of that name.

Compilao of a library unit which Is an instantlation

A possible existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

a of a secondary unit which Is a library unit body

The existing body is deleted frm the sublibrary together with its possible subunits. The new
body unit is inserted.

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possible subunits. The new
subunit is insetted.

5.42 Incorrect Compilations

If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that If a file consists of several compilation units and an enrr is detected in my of these
complation units, the program library will not be updated for any of the compilation units.

5. Instanthaton of Generic Units

Thi section describes the order of compilation for generic units and describes situations in which
an error will be generated during the instamiation of a genric unit.

49

DACS 660W Dare Ada Crass Compiler System - User's Guide
The Ada Compiler

5.5. Ordinr of Complatinm

WhnInetlznuating a generic unit, it is requird that Uth entire unit including body and possible
submits, be compiled beorPde U first Instantiation. This is in accordance with the [DoD-83J
arapser 10.3 (1).

LL52 Gawkc Formal Private Type.

This sectian describes do treaumem of a generic unit with a generic fonnal private type, where
Utre is same construct in Uth generic unit that requires that the corepndn actua type must
be constrained Ulit is an wary type or a type with discriminants. and there " instsltatiations
with such man un arm- alned type (see [DoD-831 Section 12.3.2(4)). This is considered an illegal

comlntlca.In some cases Uth error is detected when Uth instantiation is compiled, in other case
when a constraint-requrlrng comnstruct of Uth generic unit is compiled:

1) If Uth instantiation appears in a lawe compilation unit than Uth first constraint-requiring construct
of Uth generic unit Uth error is associated with Uth instantiation which is rejected by the
compie.

2) If Uth instantiation appears in Uth -ae compilation unit as Uth first costaint-requiring
conmtructon of Uth generic unit there are two possibilities:

a) N f the is a constralm-requiring construction of the generic unit after the instantiation, an
error message appears with the instantiation.

b) U Uth Instantiation appears after all constraint-requiring constructs of Uth generic unit in that
compilation unit, an error message appears with Uth constraint-equiring construct but it will
refer to Uth illegal inistantiation.

3) ibe instantiation appears in an earlier compilation unit than Uth first constraint-reqtuirng
con-truction of Ute generic unit, which in that case will appear in Uth generic body or a

subunitL f Uth Instantiation has been accepted, the instantiation will correspond to Uth generic
declaraion only, and not include the body. Neverfthless, if the generic unit and Uth instantiation
wre located in Uth sae sublibrary, then Uth compiler will consider it an error. An error message
will be issued with die constraint-requiring construct and will refer to Uth illegal instantiation.
The unit containing Uth instantiation is not changed, however, and will not be marked as
invalid.

SA rrltalu Variables

Use of uninitialized variables is not flagged by Uth compiler. The effect of a program that refers
to, Ut value of an uninitialized variable is undefined. A cross-reference listing may help to find
uuanditalled, variables.

s0

DACS 6800 Barn Ada Cmii Compiler System - User's Guide
The Ada Compiler

W.7 NgPgm Structue and Compilatiom lames

he Wowing limitatmis aqpy to the DACS-680x0 system:

" F.ach souce file can contain, at most, 32-767 lines of code.

"* The name of compUaion units and identifiers may not exceed the number of characters given
in the DIOPUT LENGT parameter of the configuration file.

"* An ineger ierA may not exceed the range of INTEGER, a real literal may not exceed the
ran of LONGFLOAT.

"* The muber of fonm parametemrs permitted in a procedure is limited to 64 per pammeter
i Pifiai Them is no lmit on the number of procedure specifications. For example he

procedure OVER-LIMIT (INTEGER01,
INTEGER02,

INTEGER66: in INTEGER);

exceeds the limit, but the procedure can be accomplished with the following:

procedure UNDERLIMIT (INTEGER01 : in INTEGER;
INTEGER02 : in INTEGER;

INTEGER66 : in INTEGER);

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
reatrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublbrades.

51

52

LINKER OPTIONS

The linker options of this Ada implementaticn., as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

6 THE ADA LINKER

The DACS-680x0 linker must be executed to create a progrun executable in the target
envirmnm. Linking is a two stage process that includes an Ada link using the information in
the Ada program library, and a target link to integrate the application code, run-time code, and
any additional configuration code developed by the user. The linker performs these two stages with
a single coumand, providing options for controlling both the Ada and target link pmcesses. This
chapter describes the link process, the options to the DACS-680x0 linker, and the configuration
of the linker.

6.1 The Link Process

The linking process can be viewed as two consecutive phases that are automatically carried out
when issuin the link command al.

The link process is carried out in the following steps:

"* Determination of Ada compilation units to include in the target program.

"* Checking the validity of the included units according to the Ada rules.

"• Determination of an elaboration order for the target program.

"* Group units and tasks into classes (for security critical applications, see chapter 10).

"• Generation of an object module to invoke the elaboration of the included Ada compilation
units. This module is called the elaboration module.

"* Determination of attributes of the program being linked (see section 6.7).

"* Generation of an initialization module.

"* Generation of option file(s) to the target linker.

"* Invocation of the target linker.

The tasks of the first three steps are described in chapter 10 of the [DoD-831, the last five steps
are described in detail in the following sections.

6.2 The Invocation Command

Enter the following command to the SunOS shell to invoke the linker.

$ al (<option>) <uintname>

where the options and parameters are:

53

DACS 68090 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

OPTION DESCRIPTION REFERENCE

-[noelbot Generate boot module. 6.2.1
.Ioaciasas-file Class file name. 6.2.2
-cpu Select Target board CPU. 6.2.3
- !aotdebmg Geame debug information. 6.2.4
4ebits Save option as new linker defauls. 6.2.5
-[mouumy Alternative program sta label. 6.2.6
-4mIemptlims Comnl of exception management. 6.2.7
-[mexemutable Name of executable file. 6.2.8
-[moJimU Control of which floating point processor is used. 6.2.9
-(OuNhp Conrol of memory management. 6.2.10
4-•m1itlle Initialization file name. 6.2.11
-imterrupLstack lnterrupt stack description. 6.2.12
-[nojIteb Number of Interrupt Task Control Blocks allocated. 6.2.13
-[no(keep Do not delete temporary files. 6.2.14
-library The library used in the link. 6.2.15
-[m.llofie Log file name. 6.2.16
-(njio0gcal..memory Logical memory specification. 6.2.17
-nmln.task Main task specification. 6.2.18
-[111111ap Keep linker map file. 6.2.19
-mmu details Setup values for MMU registers. 6.2.20
.mode Execution mode. 6.2.21
-(no~optlonJle Linker option file name. 6.2.22
-ram Physical RAM memory specification. 6.2.23
-ram..base Base address for RAM sections. 6.2.24
-ram.ectlos Description of RAM memory sections. 6.2.25
-[noirom Physical ROM memory specification 6.2.26
-[nolrominmse Base address for ROM sections. 6.2.27
-[40mrom..ecdons Description of ROM memory sections. 6.2.28
-rtsatacL.uMe Amount of memory used by RTS. 6.2.29
-[mIoscod Supervisor code sections. 6.2.30
-[onljdat Supervisor data sections. 6.2.31
-[n0sjtatistics Print statistics. 6.2.32
-[no1tarlg-.ptilms Options to the target linker. 6.2.33
-tas..deumldts Default values for tasks. 6.2.34
.[no&ctb Number of Task Control Blocks allocated. 6.2.35
-uulmclbrary UCC library name. 6.2.36
-lo uok d User code sections. 6.2.37
-4f=)1" User constant sections. 6.2.38
-[umoudat User data sections. 6.2.39
-[fsjW-Mbrary A user supplied object library. 6.2.40
-[umivedr Intemrp vector description. 6.2.41
-[u3Jverif Print information about the link. 6.2.42
-mjwarmi p Prim warnings. 6.2.43
cuuit-rame, Name of the main unit. 6.2.44

54

DACS 680x0 Bare Ada Croa Compller System - User's Guide
The Ada Linker

All P and option keywords may be abbreviated (characters omitted from the right) as
log as no ambiguity arises Caing is significant for options but not for option keywords.

For all option values specifyin a 32-bit addreM, 2-complement wrap-around is performed on
negate mnmbers, e.g. -rmnbase=-1 is equivalent to -rom_.bsemoxffffff.

6..1-[uslatm

.hboot (dfault)

f -boat is specified an absolute file suited to gain control upon a ret is generated. The first two
loagwords in the RTIMCODE section contain the start Program Coumter and the interrupt stack
address. If -noboot is specified the absolute file does not contain the reset information. -boot is
nam valid when option -debug is specified, see section 6.2.4.

6.2.2 -[no~ass.flle

-dasJIlle cle_name>
-nodassile (default)

Specifies the name of the file containing the class specifications. The syntax of class specifications
is described in chapter 10, where the concepts of classes are described as well. This option is
only legal if option -mode is set to SECURE or SAFE.

6.2.3 -cpu

.cpu 6sM 1 o 168W
-cpu Ahighest likensed> (default)

Specifies the Motorola Central Processing Unit (CPU) on the target board. The -cpu option must
match the actual CPU on the target board, as this option directs the Ada Linkers selection of RTS
and supporting libraries. This option defaults to the highest CPU for which the DACS-680x0 has
been licensed, with 68020 being the lowest and 68040 being the highest.

6.2A -[noJdebug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is required
to enable symbolic debugging. If -nodebug is specified, the Ada linker will skip the generation
of debug information, thus saving link time, and will not insert the debug information into the
chosen sublibrary, thus saving disk space. Note that any unit which should be symbolically
debugged with the DDC-I Ada Symbolic Cross Debugger must also be compiled with the -debug

55

DACS 680x0 Dame Ada Cros Compiler System - -User's Guide
The Ada Linker

option. See Section 5.13. -debug is not valid, when options -boot or -vector INIT are specified,
see sections 6.2.1 and 6.2.41.

6M -deubts

-dehults

Saves th rent sewing of all options and parmnetes, except the -defults option itself, as new
defaults for the linker. The defaults are saved in the file specified by the envirnmetal variable
ADA..JNKDE AULTS. When this option is present, no actual linking will take place. For a
complete description of the Ada Linker defaults system, please refer to section 6.3.

6.2A -[om tr

-nhertry
-entry "AdaELAB$Entry" (default)

The -entry option specifies the entry name of the program. If -entry is not specified the entry
point is the start of the elaboration module.

"7 -[noeceptions

-excpions (default)
-noexceqtions

If -exceptions is specified the exception management routines are included in the target program.
If -noexceptiom is specified, the exception management routines are not included in the program,
and the program will abort if the program raises any exceptions. If -noexceptions is specified
and the target program has the exception attribute (see section 6.7) a warning is reported, and the
exception management routines will not be included.

6.U28 -[nooexecutable

-executable <file-name>

-executable <nuln.unmt>.x (default)

The -executable option specifies the file name of the absolute file created. <file-name, is used
as name for the absolute file. If -noexecutable is specified the absolute file is not created.

56

DACS 6N00 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

-•m eo1 4 3s52

*~. m (defatt)

Specifies the floeting point co-ocessor available on the targt system. If -cpu W040 has been
specified, 4a 6M31 is not alowed, n the MC6040 FPU emulates the MC68882 copeocessor
ad not toe MCW 1 copmceusor. If -uopu is specified and the taret progrmn contains my
floafin point btmctiom an eror mes is issued. Set section 6.7 conacning the flot awfibtf
If Al copilation unis required for execution an compiled with -nofpu option no flsting point
lwuanctiam ar generated and a link with -nofpu will never fail.

62.10 4ouhaup

4mp (default)

If -hemp Is specified and the target program has the heap atribute (see section 6.7) then the
storue routines an included in the targ program. If -noheap is specified the
storage management routines are not included in the prWgam. When -nohbep is specified and
the target program has the heap attribute, an error is reported and linking tenkmates.

6.2.11 -[molnit-fle

-bdthfie <e-neam
-nohdtifie (default)

The .h-ltfile option specifies the name of a user supplied initialization file. cfle-name> is used
as name for the initialization file. If -noinit.fle is specified, the linker generates an initialization
file with the nmne <preflx>_Jnit.s It is assumed that the initialization file is an assembler
source file.

6&12 -Interrupt.m*ck

4nterupLmtack [NOSTART I START=caddress][LSIZE=cnumber>]
.huterrupt..ack NOSTARTSIZE=10240 (default)

Specifies the creation of the interrupt stack. If START=<address, is specified the interupt stack
polmer is initialized to <address>. If NOSTART is specified the linker allocates the interrupt
stack in the section R1SDATA. START=<addres> is not valid when -mode is set to SECURE
or SAFE. If SIZE=cnunmer is specified the <nunmber> bytes is allocated for the interrupt stack.

57

DACS O6NO0 Bare Ada Cross Compiler system - User's Guide
The Ada Liker

6.L13 -l[ojkb

-4tb member%
-odkb
-b s (default)

1Te .llcb option specifies lie nmber of interrupt ca l lMocks to alocane. If -Mb <number>
is specified dwn acumbem of inewupt acoo l blocks wae alocaed, who ammber> must be
in the r 1q 1.32767. f -eldb Is specified and the target pogm has die umuu at'bute (see
section 6.7) lien an eor is reponed and the abolute file is not created. If the target ppun
does no have the Weipt attribute die -kb option is ignored.

6.L.14 4-no. ep

-ke--ndb"P, (defaul)

If ke i specified teaporny linker files are not deleted, otrwise they are deleted. See ao
section J.5 about tempomy linker fils.

6.2.15 .roary

-Ubwer <5enmeD.n
-Ibrar $ADA.. RARY (default)

The -brary option specifies the curent subllbruy frm which die linkin of the main unit will
take pha If ds option is not specified, the subfibrary spcified by the envitonnenal varame
ADA.IBRARY is used.

6.2.6 -(fogftltle

.%,-file ale-nsmeý
-mog-ff. (default)

Specifies that linker infoamation dsall be written to a file named fle-nmame. The log file will
contain all verification infonmation specified by the -verity option and all statistics specified with
the -statstics option, plus wamings and eois messages, a listing of the class file (see section
6.2.2), an expanded list of the class file e a detailed description of each compWation
wit included in di pgrm, and a link stmmmoay.

58

DM3 S~x ~ m Ada Cross Cbmiler Systems - Users Gluide
Mhe Ada Linker

G.2.17 -[mlogleal-mommry

4@0=1memory 4* Ld-oý a&,L~wa&o~~dr>
L.aei.ummry (defaul in RASIC mode)

I-V ~m~..ry kUK S~~ff (defoult in SECUR .ad SAFE mode)

lTh -hocal-amonry specifies the logical memaory mua availabe for task stacks and task heaps
in Uth venM6uW -lea m r -is only lega when option -modei. s set to SECURE or SAFE.
lTh logical memory mum be disjoint fl. ith physical memory (see section 6&2.3).

G.2.3-ig l~s

-mibm-task [MORJOTY=<cmgmbu>J
[9NOTBME-SLICE I ,TIM-L.SCE=4=@I:,J
(INOFLOAT I AFLOATJ
[,NOSTACK..START I ,STAC1LSrART=<addr=>1a
[$rACK-SIEWc-numiaer1
[JIEAP.JZE-cýumber:-j

-sub-task MRORrTY=12ZNOTIME.SUCEFLOATNOSTACK-START,\
STACK SrEZ=10240,HEAP-SIZE=10240 (default)

The -amuin-toa option specifies priority, time slice, use of floating point co-pmecessor, stack
stnt, stack size and heap size for the main wkL Hf PRIORITY=aumnbwer, is specified and dhe
pragma PRIORITY has not been applied dien the main task has the priority <numuber> which
must be in fth range 1-24, odhewise it has the priority specified in the puagma. If the
TI ME.11K-JLCEZcrs Is specified then the main task has the time slice <rhub> (<reabo must be
in lth form <nne><umber2,). If NOTIME SLICE is specified the main proguwn does not
bane a time slice. If FLOAT is specified ith main program may use ite floating paint
co-pocesmo. lTh stat of die co-processor will not be saved as part of the main task context If
NOVLOAT is specified the main program mumt NOT use the floating point co-processor. If
STACK--START=<*ddresa> is specified Uth main stack pointer is initialzed to <address. If
NOSTACK-START is specified the linker allocates dhe stack for ith main progp= in the section
RTIM-DATA, and initializes the stack pointer. STACILSTART=<addreus:, is not valid when
-node is set to SECURE or SAFE. If STACL.SIZE--cnumnber is specified then <nuumber>
of bytes is allocated for ith main propra stack. If IIEAP-.SJZE~cnný e is specified then
<number> of bytes is allocated for ith main program heap.

6M2.9 -[.Jnap

-pv
-maump (default)

-umW ditects ithlner Io keep ith map file. Thle map file contains; information about memory
layout of dit program. The name of ith map fil is cunaln..unIt-jname>~Aup. Please refer to
[bicrose-aJ for a description of ith map file.

59

DMCS 680 Bare A&Cam CQipier System - Usees Guide
The Ada Lnker

D7A4b mLNOT3 I TDLBDuw>
[ANo C I ,T1C:uc r>bw.mbrNO M I ,TD n r))
(PAGISC ZE nh.•-],L S IGM1ENTSIZE=c]ma*wJ

-minm~dua~s (default in B IC mode)
•...nm lid b T16 , A.7,TIf-u7,1C. fOlD, PAGLSFIl12,SEG-S1Z -E=2S

(dfault in S3CUR and SAFE mode)

Speifres values kr the MMU T=fu ln Ozmi Regisem -• • iha s only legal when
-nusd is in o SICURE or SAML - ua d-deif is only legal when MODE is set to BASIC.
The pirmetr values m all tImber of bits. TIA to TID) specifies the number of bits to use on
MMU tabie level A to D. PAGEIZE specifies the number of bits used for each page accessed
by a pope dticr ptor aery In the MMU tables. SEGMENT-SIZE specifies the number of bits
umd for a segment of the logical memoy assigned to each task gnmp. The segment of a task
group amxtii the taek group heap and stcks of all tasks of the task prup. Please refer to
[MOTOROLA-al and (MOTOROLA-b] for a detailed desaiption of the MMU and its registers.

A nmber of consuaris apply to the keywords of the op•on:

" If -cpu .M is specified, the following values awe valid for the keywords of the
-nnduall option: TIA, 113, TIC and TmD must be in the range 2.15; NOTIB,
NOTIC and NOTID can also be used. PAGESIZE must be in the range 8.15 for page
sizes between 256 bytes and 32K bytes. SEGMENTSIZE must be in the range 9.30 for
a segment size between 512 bytes and 1 gigabyte.

" If -cpu •E0W is specified, the following values are valid for the keywords of the
-u de.Is option: TIA and TIB must be 7, TIC must be 5 or 6, and NOTID must
be used. NOTIB and NOTIC cannot be used. PAGE-SIZE must be 12 or 13 for a page
size of 4K bytes or 8K bytes. SEGMENT_.SIZE must be 18 or 25 for a segment size of
256K bytes or 32M bytes.

"* SEGMENT.SIZE must be equal to PAGEMSIZE + TED or PAGE-SIZE + TED + TIC
or PAGE-SIZE + TID + TIC + TIB.

"* PAGESIZE must be equal to or greater than each of TIA + 2,3 TB + 2, TIC + 2, ad
TmD + 2.

" If NOTIB is specified, both NOTIC and NOTMD must be specified as well, otherwise if
NOTIC is specified, NOTID must be specified as well.

" The sum of TIA. TIB, TIC, Tm and PAGEL.SIZE must be equal to 32.

The default value of -mnunudetals in SECURE and SAFE mode defines a four level address
taudation taWle tree with each page having a size of 4 Kbytes and each logical segment having
a size of 32 Mbytes. See section 10.5 for fluher description of how the values for -mum details
is uilized.

60

DACS ~Sx Bw Ada Cuss. Compfler systm - Uaeg' Guide
• e Ada iker

-no&BASC I SEUR I SAFE
-mode BASIC (dmk)

Specifies how the prmom dhol execuft BASIC mea dhat al code execu m mapevwisor
pvl lvl i& th is MmmoY Prlotc of eihe code nor daa SECURE mode ai SAFE
mode mms dus code md dam ca be promcmd ufi te MMU md gpefd by a of the
.dhafile option. If -mode is m to SECURE or SAFE th -dbm.. option muW be specified
a wwdL In SECURE mode al objecis docted by daocato are dloaed a the itack of the ta
eeuag Mte allocamr, while in SAFE mode they are alocaed an th heap of the tk executfi
dw alocasor. SECURE and SAME modes cm only be aelected when option -cpu is atL to 6803
or 68040. See chpter 10 for a complete dearia of modes.

61.22 -[.osome

-apdox-t Me-ae
-noop4IonfMe (defaul)

The -oRid.J•I option specifies the name of the target link option file. <flle-name> is used as
she name for the targ link option file. If -fooptim..Me is specified the Ada linker g rges
an option file with the name cmain..unft-name>.opt

623 -ram

-ranm <saaddr>,<emdddr>4,abftladdr>,<nd..addr,>}
-ram 5tO~xwfff (default)

The -ram specifies the physical RAM memory available for the executable program.

6.24 -ambme

-ramnbMe <addres>
-ramn.hase 0Wl0000 (default)

The -raqtmeen option specifies the base address for the program placed in RAM memory. The
pingrmn sections specified in option -ramuctlos are placed cousecutively from the address
specified with this optiou. In SECURE and SAFE modes, the base address will always be page
aline. The address must be within the physical RAM memory specified in option -ram.

61

DACS 6~S• Ads CroM COmpOlr Systm - Uer's Guide
11e Ada Linker

L.2JS .n~mm

.ftm.Jdlum S .UM CLODi,SUFL.DATAUSER-CODE,\
U)CONStUSER.DATA (defa*lt)

113 -mro --Iem opdtiopecifies the sectmion io be placed in RAM memory. The sections ae
pce In the specified order bm dke addsas specified with option -am.-bue. Valid ection
mu es =SUP•RCODE, SUPER.-DATA, USUCODE, USER-CONS and USER-DATA (see

ntna 6,).

S226-(meom

-t=m -,mdadidr-G<Ma addr>,-nd-addr>)
-10I (defut)

ibe -. our specifies the physical ROM memory available for the executable program.

.M27 -[okom bame

-rmv..bm <addrs:,
-. smrm.b.m (default)

lbe -rou-m option specifies the base address for the program placed in ROM memory. lbe
proam sections specified in option -rom-selons are placed consecutively from the address
specified with this option. In SECURE and SAFE modes, the base address will always be page
aligned by tnmcsctlg the address with the number of bits specified in option -inm-dletails
keywowd PAGE.SIZE, i.e. the bos address will be the start of the page appointed by the
specified address. The address must be within the physical ROM memory specified in option

6.= n-[m~onm..uctdons

.rm-smdeu Oednamem•,udoin amme>
n w4j m (default)

Tbw .roon..iecdas option specifies the sections to be placed in ROM memory. The sections are
placed in the specified order from the address specified with the -romnLm option. Valid section
names us SUPERCODE, USER-CODE and USER-CONS (see section 6.8). By default no
seedon are placed in ROM.

62

DACS 680O Bl, Ad s (C mpiler Sym - Uses Gude

The Ada Utter

.is.ea~n (defalt l)

Spcifis the MOMt Of etm Mac space a•f11ced in eauc task for the uwe of user supmied code
i the Ml. If tMe Ada Code ham to any exlernally supplied user code (e.g. by use of the
-.W.bWY opto ehecuin In suevisor mode, -rta.m*.. un should be am to the mount
Of ack M* iame by ft exneml code. 1e Ada LIe detemines how much RTS stack spl
It Will saed for the MI' pwope at~, and will amuteatcally alicm te i minimumneesar RIM
stack space.

-S4
-m RS-CODE (defalt)

Spefi which pnom r sectn are Io be placed in the supervisor code space. -nomd indicates
t o s romm ect m should be placed in the supervisor code space. See section 6.8 about

6",31 4-•]ida

-dat RTSDATA (default)

Specifies which por sections we to be placed in th supervisor data space. -mnolat indicates
that no prognom sectio should be placed in te supervisor data space. See section 6.8 aboutplolgram seaom

61M3 4.j1staisdcs

-5-2
1 m (dert)

-aatles specifies that sdcs should be displayed about the compilation units included in the
progrnm and their dpendencies, ohewise no statistics is displayed. If option -Iog-lie is specified
(se mcton 6,.16). the statistics will be included int the log file as well.

63

DACS 680x0 Bar Ada Cuwus COmpiler System - User's (Guide
The Ada Linker

-.2-3 _-(.-l-rL.p• _ dsm •

4mpL~pdmsspecifies additional options to the target linker. cairIhp will be added to the
fo~a~ r the tnar lb*er when die Ada LIInke inokies die target linker. For instance if

wL a "-t ef is specified, - c will be added to the tma t linker options resulting (in
ft cM) in the ced symbol acs-reeence table being included in the linker map file. If
msoq•m s specified no additional options, spart ftm the options determined by te

Ada lifter Itself, will be added to tie options for the target linker.

6.234,4maskdhul

4uLdebmu [STACILSZE=numberh mJPOR-TYV=nnumber
GNOTI1MSUCE I ,THMESIJCE-abý]

S4 el s bSTACK L=SIZE-1U4*,PRORrITY=12,NOTIMESLICE (default)

Specifies the default values to be used for task creation. "he defaults specified will be used when
creating tasks which do not contain pragma priority or th length clause specifying the stack size.
If STACLSIZE=cUu Ier, is specified then nmumber> of bytes is allocated for a task stack.
If MJORIUY=amber> is specified then <inuber> is used as the priority of the tasL The
specified proty must be in the runge I to 24. If TIM..SLICE=creab is specified thin <crea1
specifies the number of seconds to use as the time slice for the task; rual> has the form
<mdN.bu-.mumberx. If NOTIME.SLICE is specified the task does not have a time slice. If
the tag pograun does not have the tasking attribute (see section 6.7) the -taskiefanlts option
is ignored.

6.2. 4noJlcb

-teb, cmimer>

S4eb 10 (default)

Specifies the number of task control blocks to be allocatd. If -tcb 0 or -notcb is specified and
the target pVngimn has the tasking attnbate the linker reports a error and no absolute file will be
pwdhced. Ibi orion is ignored if the target program does not have the task attribute (see section
6.7).

6.2&M~m

-ueJ Sriy $ADAUCC (default)

The -sMcilbray option specifies the name of the UCC library to include in the target program.
If the UCC library is not specified the envimmnental variable ADAUCC is used as file name.

64

DACS 6800 BaMe Ada Cross Compiler SYsem - User's Guide
The Ada Linker

S-om7 ucod

-scmd ADA-CODE (defoult)

Spcifics which pMlu secior, M to be placed in the user code space. -noulod indicates that
90m pun secios should be placed in the user code space. See section 6.8 about program

-ueat -carlnp>(,<zirnp>)
Snoucst

-• ADA-CONS (default)

Specifies which program sections am to be placed in the user constant space. -noucat indicates
tha no pog am sections should be placed in the user constant space. See section 6.8 about
rogrm s .

6±3 4.ol1udat

-u at <Mram{,sry< im > ,.)
-noudat
-UdrA ADA-DATA (default)

Specifies wich pogram sections am to be placed in the user data space. -noudat indicates th
no ptrwgnm sections should be placed in the user data space. See section 6.8 about program
sections

CL40 -4no]uu..Jbrary

-uw-lbrary <fme w>,4<ffe-name>)
-mousrlbrary (default)

When specified the object files and object libraries denoted by file-nmem is included in the link,
othewise no user librazy is included in the link.

6.2A.41 nolvector

-vecto [NOADDRESS I ADDRESS=caddressJ[,COPY I ,INTJ

-vector NOADDRESSCOPY (default)

65

DACS 6800 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

Specifies creation of the interrupt vector. If ADDRESS is specified the interrupt vector is placed
at caddress. When NOADDRESS is specified, the interrupt vector will be placed in the section
RTS.DATA. If COPY is specified the intermipt vector active when the program was invoked is
copiled. If INIT is specified the interrupt vector is initialized by the routine AdaUCCD$1nitIV.
-*mvctor specifies that no initialization of the interrupt vector takes place. The program can
hereby be invoked by an interrupt After program invocation the interrupt vector can potentially
be modified. ENIT is = valid when option -debug is specified, see section 6.2.4.
ADDRESS=<addrUs is invalid when -mode is set to SECURE or SAFE.

"a -[nolvefy

-verify [ALL][,ELABORATIONORDER]LCOMMANDSI[,PARAMETERS]
-noverify (default)

Determines the type and amount of information generated. If ELABORATION-ORDER is
specified the elaboration order is displayed, If COMMANDS is specified the commands executing
the various subprocesses are displayed, if PARAMETERS is specified the active parameters and
options ae displayed, and if ALL is specified all of the above mentioned information is displayed.
If option -lugJIle is specified (see section 6.2.16) the information will be included in the log
file as well.

6.2.43 -[noiwarnings

-warnings
-mwarnings (default)

Specifies whether warnings should be generated or not. Warnings are generated when conflicts
between target program attributes and specified options are detected, and when a package does
not have a body.

6.2.44 The Main Unit Parameter

<Unit-name>

The main unit must be a parameterless procedure and must be present in the library. The main
unit name is a required paraneter.

6.3 The Linker Defaults System

As it can be seen from the description of options above, default values exist for all options.
However, it is possible to change the initial setting of default values and even have several
configurations of default values for the Ada Linker. The Ada Linker default values are controlled
by use of the option -defaults and the environmental variable ADALINKDEFAULTS.

66

DACS 680x0 BSae Ada Cross Compiler System - User's Guide
The Ada Linker

The Ada Linker obtainm its option and paameter values in the following way: First, options are
initalized with the default values indicated in the above description of options. Second, new
option and pmetr d= ame loaded fom the file indicated by the e-i-- nm variable
ADA.LJNLKDEFAULTS, if this points to an existing file. And third, options and parameters are
given the value specified in the invocation command of the Ada Linker.

When the option -deftults is specified, the current value of options and parnmers are saved as
new defats in the file identified by the Y'nvo entel variable ADAIJNKDEFAULTS. Note
that ADA.JINLW.EFAULTS is not defined as a envieonmemal variable when the DACS-680x0
is distributed by DOC-I, so an explicit definition is necessy.

Assume that the default value of 4tcb should be 25 inswtd of 5, and tha the new default settings
should be saved in the file DEFAULTS1JNK The following commands could be used:

$ setenv AD.L.LI .DZFADLTS DhFAULTS.LXNIK
$ al -defaults -Ltob 25

These commands will create a new file called DEFAULTSLINK in the current directory (if it
does not exist already) and save the new linker default values in this file. As long as
ADA_.JNLDEFAULTS keeps its current value of DEFAULTS.LINK, all linking performed in
the current directory will have a -itcb default value of 25. Note that one should normally assign
a fMlly expanded file name, like nhcme/ada-users/iser./work/DEFAULTSJ.JNK, to
ADALINKDEFAULTS to ensure that the corect default file will be found no matter in what
directory the linking is perfoumed.

Several configurations of Ada Linker defaults is possible, simply by changing
ADALINKJDEFAULTS to denote different linker default files depending on the desired
conMfur By the same method, different users can have different linker default values, simply
by having ADALINKDEFAULTS denote diffentm files.

When option -e•faults is specified no actual linking takes place; only the current value of the
options and parameters are saved as new defaults. Before saving the new defaults, all options are
checked to have a valid value without consideration of other options. If this is not the case, an
error is reported and the new values are not saved as defaults. However, no check oninterdepende between the options are performed when specifying new default values, e.g. it is
possible to set -mode SECURE as default value without specifying a default value for -dassfile.
The Inutere between option values is checked only when an actual linking will be
performed, i.e. when -dekults is not specified.

To reset the Ada Linker Defaults to the factory setting, simply use the command:

$ seteny ADAM.LIXM.DlAULTS ""

which will esure that no linker defaults file will be read when the linker is invoked. If the fi•e
denoted by ADAJNKDEFAULTS will not be used again, the file can be deleted. The current
linker defaults setting can be viewed with the option -verify PARAMETERS, see section 6.2.42.

67

DACS 680W0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

6.4 Evlrmuental Variables Used by the Ada Linker

When the Ada linker is exec"d the following e mwi ental vaiables are used:

VARIABLE PURPOSE

ADAMJBRARY Idenifies the default hlbra used by all DACS wols. It is the lowest
level mublibrary in the program library hierarchy. This default may
be overidden by the 4ibrary option.

ADALINKDEFAULTS Identifies the file containing the Ada Linker defaults. Defaults are
saved in this file when the option -defaults is used.

ADAUCC Identifies the library containing the User Configurable Code, e.g. an
UCC library supplied by DDC-I. This default may be overridden by
the -uc.lAbrary option.

6.5 ille Names Used by the Linker

During the link, the following temporary files are created in the current default directory:

<prefix>_nit.src
<prefix>_lniLobj
<prefix>_elab.src
<prefx>_ehab.obj
<preflx>_end.src
<pmfix>_end.obj
<prefix>.opt
<prefix>_<unit_no>.obj
<main_unit_name>.opt
<main_unt.name>.com

If the -keep option is used <qpeflx> is the main unit name, otherwise cpreflx> is the process
identification (pid).

If linking for SECURE or SAFE mode (see section 6.2.21), the main unit and each defined class
will result in the generation of a target linker option file.

6.6 Return Status

After a linking the return value of the Ada Linker will reflect if the linking was successfully
completed. The following retrum values are possible:

68

DACS 6W0x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

0: The link was successful. Warnings may have been generated during the link process.
1: An error occurred during the link process, e.g. the Ada Linker is unable to find the UCC

file. Tie Ada Linker will generate an error message stating the cause of the error.
2: An internal error has caused the Ada Linker to abort, please contact DDC-I engineers.

6.7 Program Attributes

The linker evaluates the following attributes of the target program:

"* Tasking constucts
The target program has the task attribute when Ada tasking constructs are used.

* Floating point constructs
The target program has the float attribute when the program uses the floating point
co-processor. The target program will only use the co-processor insuctions to implement
operations on floating point types.

"* Intermipts, entries or procedures
The target program has the Interrupt attribute when the program contains address clauses
for task entries or the PRAGMA INTERRUPIHANDLER.

"* Exception handlers
The target program has the exception attribute if the program contains any exception
handlers.

" Heap
The target program has the heap attribute when the program contains allocations or
deallocations on the heap.

" Secure execution
The target program has the secure attribute if the program is compiled with option -mode
set to SECURE or SAFE. In this case the MC68030/MC68040 on-chip Memory
Management Unit is used to protect code and data segments and for controlling storage
checks.

The linker uses the attributes to generate the initialization module, to issue warnings if a
combination of options is in conflict with the attributes of the target program, and to determine
the proper RTS to include in the target link.

If a program contains interface calls interfacing to code which requires tasking, uses floating point
instructions or storage management, the Ada compilation unit must contain a pragma to set the
appropriate attribute. Please refer to Chapter 12 for details.

69

DACS 680x0 Bare Ads Cross Compiler Syem - User's Guide
The Ada Unker

6.3 Progras Sections

Tie lompiler uses On following pIopm sectiom:

Section Contents

RTSCODE Run-Time System code
RTS_.DATA Run-Time System data
ADACODE Compiler generated code
ADA-CONS Compiler generated constants
ADA-DATA Compiler generated data

Table 6.1: Progran sections

The program sections RTSDATA and ADA-DATA must be in RAM memory. The programn
sectomn RT-CODE, ADA.CODE, and ADA-CONS are not modified by the execttion of the
pogramn ad may be placed in ROM. All sections must be placed in either RAM or ROM
memory.

The linker groups the program sections into 5 new sections: SUPERCODE, USER-CODE,
USER-CONS, SUPERDATA and USER-DATA. CODE and CONS sections can be stored in
ROM if desired. DATA sections must be placed in RAM. In SECURE and SAFE mode the
SUPER and USER sections can be accessed when executing at supervisor privilege level, while
only USER sections can be accessed when executing at user privilege level (please refer to
[MOTOROLA-a] and [MOTOROLA-b] about supervisor and user privilege level). In BASIC mode
the SUPER and USER sections can be accessed both when executing at supervisor privilege level
and when executing at user privilege level.

When including user defined sections e.g. modules written in assembler, each of the compilers
program sections and the user defined sections must be specified to the linker as one of the RTS
progran sections using the options -udat, -sdat, -mcst. -ucod and -seod.

6.9 The Initialization Module

The initialization module defines constants, allocates memory, and contains the code for
initialization of the processor and the RTS. The initialization module for a given target program
depends on the program attributes and the options given to the linker. The initialization module
is generated as an assembler file with the name <prefmlx>nltsrc. The assembler is invoked to
produce the object file with the name <prefix>_lnit.obj. If the -keep option is used wpreflx> is
the main unit name, otherwise cpreflx> is the process identification (pid).

6.9.1 The IntIalIzatIon Constants

The initializaimon module defines the following externally visible symbols which are constants used
by the rnm-time system

Ada..JqITS sphyS ze

The size of the display vector in bytes. This symbol is always defined.

70

DACS NOW Bure Ada Cross Compiler System - User's Guide
The Ada Linker

AdL.INJT$bkrnt StackSlze

The size of the interrupt stack in byte This symbol is deined when the _Intermptstack option
is specified.

Ada-(ITVMahLStackSIze

The byte size of the stack for the main task. This symbol is always defined.

Ada.JNIr$MatneapShe

The byte size of the heap for the main task. This symbol is defined when option -mode is
specified to SECURE or SAFE.

AdaJNI-•rd1bultkllmeSfce

The default time slice for tasks. The symbol defines an integer, the unit is in SYSTEMTICKS.
The symbol is defined when the target program has the task attribute. If the NOTIMESUCE
is specified, the value of the symbol is 4xfffffff.

AdaIS--DefIautPrlority

The default priority for tasks. The symbol is defined when the target program has the task
attribute.

Ada-NrTSMaInPrIority

The priority for the main task. The symbol is defined when the target program has the task
attribute.

AdaJDWSMainTIneSlice

The time slice for the main program. Same convention as AdaJWNlTSDefhultTIneSlice.

AdsINITSDefaultStackSize

The stack size for tasks for which the 'STORAGESIZE is not applied. This symbol is only
defined if the target program has the task attribute.

AdaImrr$RTSStackUse

The mnontt of memory reserved on the stack of each task to be used by the RTS.

AdaMIT$ManFPUse

Specifies whether or not the main task may use the floating point co-processor or the 68040 FPU.

AdaJNIT$TCBCount

The number of task control blocks allocated minus one. This symbol is only defined when the
targ% puogrmn has the task attribute.

71

DACS 6~z0 Nue Ada Oes C omplier Sysem - User's Guide
The Ada Linker

A&JNn.. $IrTCBCM

Mhe nmer of lmenupt tk contl bloc alloca" misa one. This symbol is only defined
When wt tamr g pet p.m h the hueiupt attibiu

A&La 7%J pwSMdirteAreala

The diu of the area to allocate supervisor stacks fom. which cam be allocated to Wks naming
Mn uae privleg level. This symbol is only defined when option -mode is specified to SECURE
or SAE

A&lV4Tu&wStwkCaMm

The maximum number of supervi stacks mims one, which can be allocated to asks nmn•ng
on supervisor privilege level. Thi symbol is only defined when option -mode is specified to
SECURE or SAME

A&aJVRlVaInb&*eStackSlze

The size of the supervisor stack ated for the main task. This symbol is only defined when
option -mode is specified to SECURE or SAFE.

AdaJNITSjHepHederCoumt

The namber of heap headers allocated minus one, A heap header contains a pointer to the heap
and a heap semaphore (if the program contains tasking). This symbol is only defined when option
-mode is specified to SECURE or SAFE.

AdaJNIT$DehukHeapSq

The size of the heap allocated for a task. This symbol is only defined when option -mode is
specified to SECURE or SAFE.

Ada-NJTSlageSIze

The logica/physical page size measured in number of bytes. This symbol is only defined when
option -mode is specified to SECURE or SAFE.

AdaJNTS,•a•WIdth

The number of bits used as offset within a page, log 2 of page size. This symbol is only defined
when option -mode is specified to SECURE or SAFE.

AdaJN.ItTLgSepwntWidth

The nmber of bits used as offset within a segment. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

Ada-JNITVMUTA

The Translation Control Register's Table Index A value. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

72

DACS 68OMi Bare Ad& Coss Compfte System - Users Qilde
The Ada I*.Afer

Ada.JN1TVMMWU

The TuulAtio Cosro Regluers Tabe Index B value. This symbol is only defined when option
-=Wke Is specified to SECURE or SAFM

AiLJNITIMMWUTIC

The Truladon Control Register's Tabl hidex C value. This Symbol is only defined when option
-nade Is specified to SECURE or SAFE.

AdLJN1TSMMU`rmD

The Traulatiam Contro Registers Tabe Index D value. This symbol is only defined when option
momde is specified to SECURE or SAFE.

AdiN1TT$ILMMffhecsunt

The sine of a table describing free logical memory within all active task groups. This symbol is

only definedI when option -mode is specified to SECURE or SAFE.

63.2 Iuumiddzatiom Code

The initialization module contain code for initialization of the RTS components included in the
target programn. The Initialization steps are executed in the same sequence as they are listed. When
the initlalizatlon code is called, the interrupt priority level (1PL) mask in MC68Ox Status Registe
is assumed to be 7 and the active stack is assumed to be the interrupt stack.

V., t.a-I ami of the Interrpt Stack

The interrupt stack pointer is initialized. This initialization is only performed when the op~on
.haterrupt-stack is specified.

I~llazaon of the Main Stack

The mode Is changed to use the master stack pointer and the master stack pointer is initialized.
This initialization is only performed if option -main-ains, keyword STACK-SIZE > 0. If option
-mode is set to SECURE or SAFE the supervisor main stack is initialized instead.

Im~lalutomof the interrupt Vector

The interrupt vector is either copied from the interrupt vector defined by the VBR register, or
initialized completely, depending on the -vector option. If the -novector option is specified the
Internipt vector is not initialized.

1 1d 11 11 1 m of the Vhtual Memory Manager

If option -mode is set to SECURE or SAFE the Virtual Memory Manager is initialized. The
VMM initialization generates internal data structures concerning free physical RAM memory
specified by option -ramn and free logical memory specified by option -logical-inemory.

uinthennoi%, MMU tables are created for superviso code mapping all code as read only, user

73

DACS GlMiO Sue Ada Cross Couipiler Systm - User's Guide -

The Ada Unker

cob mapping Ada code as med only. uud supervisor data mapping all physical RA" memory as
specified with option -ram as read/wdrte.

b~li~udm of cle..e

Inifndalzan of classes is performed Vf option -mA&iiis set to SECURE or SAFE for each class
a user data memory mapping table is generated. The tabe contains constants, stack. heap, and
permanent data for the class itself and data from other classes according to the rights defined in
the class file in specified with option 4-disfl.

Imh~m~tm of the ~O Inuff"$~ Vector Entries

Mhe Intrrupt vector entries for the 6M~O exceptions thst ame used by the RTS ate initialirod by
calltg Ads- C-~E~lnkMPUIV (see die Configuration Guide [DO)C-bi for mome details). This
intializatdonkI only performed if -fow-eptlous has not been specified and the target program has
die excetion hanidler attribute.

Inhhlatsmof GM Interrupt Vector Entries

The interrupt vector entries for the 6888x or 68040 FPU exceptions thae ame used by the RIM ame
initialized by calling AdL.UCC...FSbiDFPUV (see the Configuraton Guide [DDC-bJ for mome
details). Thisiinitialization is only performed if -noexceptlons has not been specified, and the
pwgrun has the float and exception hwande attributes.

Inllmizato.of the Storage Manager

The parameter list defining the memory available to die storag manager is created and the storag
manager is initialized. The storage manager is only initialized when the target program, has the
heap, attribute.

Imldlato.of Exceptio Handler

Initialization for pre-handilers is performed.

Initialization of the 7hner

If the target program has the task attribute, the timer is initialized by calling
Ada..UCC..A~lnltToer (see the Configuration Guide [DDC-bJ for mote details). Tie timer may
als be initialized when the package Calendar is included in the program, but that depends on the
Implementation of package Calendar. The imleenaton supplied by DDC-I will use the timer.

User Specified InddahUzaton Code

At this point~, user specified initialization code is called. Please refer to Section 6.2.11 for details
on user specified initialization code.

Inialzaonof Frame Heap

The permanent frune heap headeus on the outernmos level are initialized. A frame heap header is
a structure of heap elements at current block level.

Inlhaliaonof the Main Program

74

DACS mO Bwe Ada C0Ms Comie System - User's Guide
The Ada Unker

1%0 inkislann of fte main ~peoro allocates and initialime die display vector and iniialze

die husm polter and doe display pointer (A6, AS).

b~m~ula of tdo Tadskig Kerne

If dfe target program has the task or toe buernipt attribuft, the tasking kernel is initialize&. The
hrdidinzdon of the Wring kernel crPates the main task. The initialization of fie tasking kernel
will also Cleg h ep doFL to 0. Iftd pmgru have itither of die mentioned attributes. tie tasking
hen iIs not uitlwallzed, but the NFL is cbuged to 0a

buen9C". of the Elaboration Mmdui.

Ile elaboation module Is Invoked and will execte the target pbugrin. The elaboration module
is ioid ~by I Aanu d will Ptin -by abranch or atrapif liked in SECUREor SAFE

To 0 Wnm of the Main Task

Upon retumn fim the eldaboaton modhule. the main program must wait until all tasks have
lerminated. If die mtare prgru has the task attribute, the routine in the tasking kernel terminating
the main progra is called. If not the only task (the main task) is already terminated and no
action Is reqired.

Prepsratl. for Twuiwdnat of the Program

To emmire proper termination the EPK is raised to 7, the Master Stack will be the active stack
aftwmWds.

Invocalka of User Defisted Ternmhadoun Code

Truiisfers control to the user supplied terminatio routine Ada-UCC-BSExit (see [DOC-b]). Please

refer to Section FRl. for details on user specified termination code (PRACIMA RUNDOWN).

633 Initia~lzation

Tim initialize module allocats meomry for the RTS dafta structures that depends on fth target
program or on options to the linker. The following data areas are defined, and made addressable
by the symbols:

AdaJ-lT~nterupt Vecto

lUe address of the interrupt vector. Ti~s symbol is defined when the option -vector is specified.
Nf ADDRESS=<Wddess, is specified an absolute section is created at <addre>, the symbol is
equated to <addreuss>, aud 10Y24 bytes is allocated for the interrupt vector. If -novector is specified
the symbol is not defined and the meomry not allocated.

Ade.MTPr~f ter ck

The stin address of the interrupt stack. Thins symbol is defined when the option -Interrupt-stack

is specified. If START=<addrmss is specified an absolute section is created at <address>, the

75

DM3S ~~h Rue Ada Closs OmlrSystem - uaees Guide
The Ada Liner

symbol in aplintd to .addraw and lte nmaber of bytes specified with SIZE ane reserved.
O1wwl n ke t errupt atac is alocaled in the RTS-DATA section by a DS dirctive.

Tlhe m a dr ess of die mai poru Mmdc The symbol is defined when the option -main-tak
Is specifled If sUARcT=ddiU. is specilfd then the symbol is equated to caddrmn otherwise
do main sack Is alocamed in the R'IIDATA section by a DS directive.

A p thar so th main displa when the proga has no tasking. The memory is only aloaed

wben it tar• goUm has the task attrlbute.

AdLJNITTjCL~ddreu

Mw start addrss. of the memory allocated for the task axotrl blocks. The mmory Is allocated
when the waret prmgnm has the task attribute.

The start address of the memory allocated for interrupt task control blocks. The memory is
allocatd when the target program has the interrupt attribute.

AdaIVl'$Cmwr CB<Wduw'u-f

One long word is allocated for each interrupt vector entry that the target program references.

Ada-VQ7VSprStacArn

The stait address of th area from which supervisor stacks are allocated. Only supervisor stacks
for to"t at user pvilege level are allocated in this area. The memory is only allocated when the
oftIn -mode is set to SECURE or SAFE.

AdaJNWSempHeap

The address of the memory for Frame hea header for allocation of temporary objects on the
outmost lexical level.

AdaNITmeapHedeArea

The start address of the memory allocated for heap headers. The memory is only allocated when
the option -node is se to SECURE or SAFE.

AdaNr-•WldTable

The star address of the memory allocated for the Function Code Lookup table used by the MMU.
The address must be 16 bytes aligned. The memory is only allocated when the option -mode is
set to SECURE or SAFE.

Ada-NmImhwPaeCotm

76

DACS NOW Barem Ada Q sClose le System - Uer' Guidie
The Ads Linker

Mw3 adueern of Uth memory allocated for Uth munber of free physical pages. lbe memory is only
alocatd wiwn the option -modle is stto SECURE or SAFE.

113 audrasof a lpoer addressing Uth list describing the fme physical pages for each task group
(mes chapter 10). Me1 memory is only allocated when the option -mode is set to SECURE or
SAFE.

Ad&JNIT~mhgdmimd

Ths ad&=u of do memory pointing at Uth next hre physical memory area in
Ada...D rwflthu pTabk The memory is only allcaed wheni the option -mode is set to
SECURE or SAFE.

Aba-ffThPOTabk

113 start, address of the memory allocated for the tabk of physical RAM memory areas used
initially. i1rk IePe- 1 of the table is derlved from the option -ramn. The memory is only Allocated
when the option -made is set to SECURE or SAFE.

AdaJNflW~eedqumunthdex

The address of the memory pointing at the next entry with a hre segment in
Ada-DNIT$reeSegiemtTable- The memory is only allocated when Uth option -mode is set to
SECURE or SAFE,

AdLaJI$FrueSegmmTable

Thie start address of Uth memory allocated for Uth table of hre logical memory segments. The
meoy is only allocated when the optio -mode is set to SECURE or SAFE.

AdaJNJT~wrSegmentTop

The address of Uth top of Uth free segment stadL The memory is only allocated when, the option
-mode is set to SECURE or SAFE.

AbtUTV FUSq.~ttw

Me3 start address of Uth memory allocated for the stack of deallocated segments. The memory is
only allocated when Uth option -mode is set to SECURE or SAFE.

AdaJNIT~rLMM9VfeArea

The start address of Utb memory Allocated for the table describing the hre logical memory within
all active task groups. The memory is only allocated when the option -mode is set to SECURE
or SAFE.

77

DAMS 60O Dare Ada Cross Compiler SyaMN - Users Guide
The Ads Linker

M* lbe Zmhwadmi Madmie

lb dadww moduleisv- ganerud amn SaMeMy file. and the assembler is invoked to pioduce
doe ard Object moddL. The Msembly Mie is namted <prudx>-Iab~wc and the object file name

MW eluboratian modme has dhe entry point Ada El ABSEamy, which is invoked from the
hoiddudon. module by a Ira-ch

UILI BASIC Execagi. Made

le ddWboaiw module has dhe folowing miUcUre When -MOde is Set to BASIC:

HAME ADA-XLAB
CRIP <selected cpu>
XD3V Ada...LAB$Entry
XRZF Ada-.INIT$Ulablgxit
XRZ, M$<main-.unit...ro>_1
IDEF R$<unit...no-.1>...
XREF M$'Cunit-no-1>-O
XDEF R$Wuit-.no.2>-O
XREF M$<unit-no-2>-O

SECTION ADA-.CODE

Ada...ELhB$Entry: bra. 1 M$<unit-no-1)...O
R$unit-no-i>-O: bra. 1 M$<unit-.no-2>..o-

bsr.1 WM$iain-unit-.no>-l
moveq.1 #O,dO
bra.1 Ada-INIT$ElabExit

The elwmortlm Module branches to fth elaboration, for each of the included compilaton units, and
dhe elaboration code will branch back to the elaboration module. T'he elaboration code for a
coinpilat Wmit will be identified by dhe label M$-cunlt..no:>h where cunl-no, is the unit
number of the compilation unit. The return point is identified by the label R$<unlt-aio>-..

6.142 SECURE amid SAFE Execudwo Mode

When linking with option -mode set to SECURE or SAFE, the elabomuton module has the
Mo~wing strucuffe:

78

DACS 68M Bait Ada Crou Ccmpile Syskm -Uuers GuM&
The Ada Unker

HMAN ADA-.ZLAB
CHIP <selected cpu>
XDIfP Ada....LAB$Entry
XWEF Ada-.INIT$11akbhxit
iRW K$cuain-.unit-.no>-.1

XRKI Ada-M.TIX$laborate
iRW Ada-.TL.X$Cal]J~ain
irW Ada-.INIT$MainClass

XR3V W$claas..naue-i>
XREF NS<claos..namm-.2>

XDEF R$unit..no-i.>-o.
XREF M$<unit-.no-j.>-..
XDEF W$unit-jio-.2>-.O
XREF 3E$<unit-.no..2>...O

SECTION ADA-.CODE

Ada...ELB$Entry: lea.l N$<claas...name>, aO
lea. 1 14$<unit...no>-1. a1
bar. I Ada..TK.X$Elabo rate

lea.i N$<clas8...rame>, aO
lea.1 M$<unit-n.ro>-1, al
bar. 1 Ada...TK.X$Elaborate

lea.l N$<class-anam>. aO
lea.l M$<main...unit-.no>-1
moveq.l #O~dO
ber.l AdaTL.X$Call~ain
lea.l Ada-.INIT$ElabExit, aO
moveq.l #O,do
moveq.l #1,d7
trap #13

R$unjt-.no-.l>-.O:

R$<unit-.no-.<u»...O: zuveq.l #Ogd7
trap #13
END

The elaboafion Of each compilation unit is handled by Ada2I1LX$Elaborate which take a clas
na8me and an elaboration code label M$<unlt-jnoj). The return point is identified by the label

3$a~u~n~.. Th elaboration of each compilation unit runs at use privilege level, but fthSMuP for the elaboration of each Compilation unit must run at supervsor privilege level. To switchfrom user privilege level to SUPervsor privilege level a trap operation is executed, and the
elaboration of the ne- rwuit wil proceed.

79

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

6,14,3 Execution of the Main Program

When an the compilation units have been elaboraed the main program is called. The main
grunm is identified by the label M$<mln..uno>nh. If the main program retum, register

dO is cleared to signal successful competion, and control is passed back to the initialization
module.

Please note that all transfers of control between the initialization module, the elaboration module,
and the elaboaion code is implemented by branch instructions. lbe branch instructions am, used
because the elaboration code may allocate objects on the stack, and consequently stack balance
cmxt be assumed.

6.11 Unkr Examples

This section contains a number of linker examples. It is assumed that the compilation unit example
is compiled into the default program sublibrary, that the envionmntal variable A.')A_J RARY
has been equated to the default sublibrary and that the enviromnemtal variable ADAUCC has
been equated to an User Configurable Code Library suitable for the target board on which the
linked program will be executed. DDC-I provides UCC libraries for the Radstone CPU-3A and the
Motorola MVMEI33, MVME143 and MVME165 boards.

Example: 1

$ al -noheap example

The program will start at address OxlO000, and the heap is not initialized. If the target program
has the heap attribute an error message is issued.

Example: 2

$ al -cam OxlOOOO,Oxfffff example

The program will stan at address Ox10000, and the heap will be placed within the address range
Ox10000 to Oxiffff. This is the simplest form of a link that will support all Ada constructs.

Example: 3

$ al -ranbase 0x4000 -ram OxO,Ozfffff example

The program will start at address Ox4000, and the heap will be placed within the address range
0x4000 to Oxfffff. Physical memory below address Ox4000 is not used.

80

DACS 680u0 Base Ada Cros Compiler System - User's.Guide
Mt Ada Linker

Eaumple: 4

$ al -wamLsectiJuons UPUCOD, Uar,.C0DZ, USLC00i\
-ran-seotions SUPU_-.DWL?, U8L.JDAA\
-= 0z200000,0x2fffff -roombas. 0x200000\
-can OzO, Ozfffff -ran-base 0x0 example

The sections SUPERCODE, USER-CODE and USER-CONS are placed in ROM from address
0x200000. le sections SUPER-DATA and USERDATA re placed in RAM from address
WxO. The put of the address range WxO to Oxfff not used by the SUPER-DATA section is used

as heap space.

$ al-reL.sections SUPZR.CODZ -rowm base 0z200000\
-ranm.sections SUPZR.DA&JT -ran-base OxO\
-scod RT8_CODZ, ADLCODZ ,ADh-C0S\
-noucod -noucat -vector INIT -boot\
-ram OzO,Ozfffff -rom 0z200000,0x2fffff example

As example 4 but a module containing reset information is produced. The reset address is
0x20000. The Interrupt vector is completely initialized. The first two long wonrs of section
RTSCODE contaims the initial PC and the initial interrupt stack pointer, consequently
RTSCODE must be the firt section to load in order to control the reset address.

Example: 6

$ al -cam OzXO000, Ozfffff\
-vector ADDRZlSS-0x70000, COPY\
-interrupt-stack START--0z70000, SIZZ0xB8000\
-main-task STACKSTART=0x68000, STACKSIZZ-OxSOOO, \

PRIORZTY-3, TXIMN_.LXCZ-0.2, FLOAT\
-task.defaults STACK_SIZZm0x8000,PRIORITY=4, \

TINM SLICZ-0.1 example

The start address of the program is Ox10000. Mwe interrupt vector has the address 0x70000 and
is a copy of the interrupt vector defined when the Ada program gains control. The interrupt stack
has start adlress at 0700000 and the size 0x8000. Please note that the first byte used in the stack
is Ox6ffff and the stack grows by decrementing the stack pointer (stack grows "down" in memory).
The main program stack's start address is 0168000, and the size is 0x8000, the main program
has a priority of 3 if pragma priority does not apply, the time slice is 0.2 seconds and the main
program uses the floating point co-processor. The defaults used for task stack size is 018000, a
priority of 4 and a time slice of 0.1 second.

81

DACS N80x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

Example: 7

$ al -nait-file ayf±1e. st -optioanfi1e y-file. opt example

The linker was not able to generate ma adequate initialization and option file, and the user decided
to use his own. The myflle.wc file contains the assembly source for the initialization module,
and the a-yiIleop contains the option file for the link. With this form of link the user has fl
control over the option file and the initialization module.

Rxmple: S

$ al -mode SZCURE -class-file example.cls\
-can OzlO000, Oxfffff\
-mu._details 8EGN T._SIZN16, PAGZ_S Z. -10, \

TIAiS, TI"=8, TIC=6 example

Execution of the program will be in SECURE mode. The class specification is in the file
example.ds. Heaps and dynamic allocated stacks will be placed in address range OxlO000 to
Oxfffff. The MMU Translation Control Register is setup with a page size of IK bytes, and TIA
= 8, TM = 8, TIC = 6, TID = 0, each class gets 64K bytes of logical memory for heaps and
stacks.

82

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -3.4028234666385E+38 .. 3.4028234666385E+38;

type LONGFLOAT is digits 15
range -1.7976931348623157E+308 .. 1.7976931348623157E+308;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-1

APPENDIX F - IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-680x0 required in
Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F1.1 PRAGMA INTERFACE-SPELLING

Format: pragnm INTERFACE.SPELLING(<subprogram.name-, <string>)

Placement: The pragma may be placed as a declarative item.

Restrictions: Pragma INTERFACELSPELLING must be applied to the subprogram denoted
by <subprogram-namem. The <string> must be a suing literal.

This pragma allows an Ada program to call routines with a name that is not a legal Ada name,
the <string> provides the exact spelling of the name of the procedure.

F1.2 PRAGMA INTERFACE-TRAP

Format: pragma INTERFACETRAP(<subprogram-name>, <string>, <integer>)

Placement: The pragma may be placed as a declarative item.-

Restrictions: The csubprogram-name> must denote a procedure or a function for which pragma
interface to AS has been applied. The <string> must be a string literal. The
<integer> must be greater than 3.

The pragma allows the programmer to implement assembler routines that need access to the run-
time system code or data in a link mode independent manner. The string literal is used as the
name for a global linker symbol, when the linker implements the call to the user supplied
subroutine. The string literal must be unique when linking a program containing calls to
subprograms for which INTERFACETRAP is applied. The integer is used as an index to the
table of entry points in the kernel and must likewise be unique. When the integer is chosen, please
consult the package RTSTRANSFERINDICES (see appendix C.8) to avoid conflicts with the
indices used by the run-time system and support packages.

When control is passed to the user supplied routine register A4 contains the value of the
stackpointer prior to the call; A4 is the only way to access parameters for the routine. The routine
must maintain stack balance and must return by a RTS.

173

DACS 680x0 Bare Ada CrMs Compiler System - User's Guide
Implementation Dependent Characteristics

For a program linked with the SECURE or SAFE mode it is checked that the task executing the
routine has the "change mode to supervisor" privilege. The check is performed before control is
passed to the user supplied routine.

F1.3 PRAGMA INITIALIZE

Format: pragma INITIALIZE(string.literal>)

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

-When the pragma is applied the linker will, as part of the initialization code generate a call to the
subprogram with the name <stringliteral>. The call will be performed before the elaboration of
the Ada program is initiated, with the interrupt mask in the Status Register at 7. If several
pragmas INITIALIZE are applied to the same program the routines are called in the elaboration
order, if several pragmas INITIALIZE ame applied to one compilation unit the routines are called
in the order of appearance. If several compilation unit-- apply pragma INITIALIZE to the same
routine the routine is only called once.

FI.4 PRAGMA RUNDOWN

Format: pragma RUNDOWN(<stringliteral>)

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Similar to pragma initialize, but the subprogram is called after the main program have terminated
and in the reverse order of the elaboration order.

F1.5 PRAGMA TASKS

Format: pragma TASKS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the task attribute. If the code that is interfaced by a pragma
INTERFACE uses any tasking constructs, the lation unit must be marked such that the
linker includes the tasking kernel in target progy at reference the compilation unit.

174

DACS 680x0 Barm Ada Cross Compiler System - User's Guide
Implmemaio Dependent aracteristics

FI6 PRAGMA FLOATS

Format: praguna FLOATS;

Placement: The pragma may be placed as a declarative item.

Restrictio: None.

Marks the compilation unit with the float attribute. If the code that is hnterfaced by a pragma
INTERFACE uses my Boating point co-processor nmuctions, the compilation unit must be
maked such that the linker Icludes initdializt of the floating point co-processor in target
pograms that reference the compilation unit.

FIJ. PRAGMA INTERRUPTS

Format: pragma INTERRUPTS;

Placement: The pragm may be placed as a declarative item.

Restrictions: None.

Marks the compilado wit with the intemp• anibute. If the code that is interfaced by a pragma
INTERFACE uses my interrms, the compilation unit must be marked such that the linker
include the iternapt handling in target programs that reference the compilation unit.

F1.3 PRAGMA STORAGE. !ýSAGER

Format: pragnma STORAMEMANAGER;

Placemem: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the heap attribute. If the code that is interfaced by a pragma
INTERFACE uses the storage manager, the compilation unit must be marked such that the linker
include initialization of the storage manager in target programs that reference the compilation unit

F1.9 PRAGMA INTERRUPTHANDLER

The pragma INTERRUPT-HANDLER is defined with two formats.

175

DACS 6•8xO Bare Ada Cross Compiler System - User's Guide
Implemenuion Dependent Characteristics

F13.1 PRAGMA INTERRUPT.-HANDLER for Task Entries

Forum: pragnm INTERRUPT-HANDLER;

Placement: The pragma must be placed as the first declarative item in the task specification that
it applies to.

Restrictions: The task for which the palgma INTERRUPTJHANDLER is applied must fulfill
the following requiements:

1) The pragma must appear first in the specification of the task and an address clause must
be given to all entries defined in the task, see below.

task fih is
pragma interrupt-handler;
entry handlerl;
for handlerl use at 254;
entry handler2;
for handler2 use at 255;

end fih;

2) All entries of the task must be single entries with no pammeters.

3) The entries must not be called from any tasks.

4) No other tasks may be specified in the body of the task.

5) The body of the task must consist of a single sequence of accept statements for each of the
defined internupts, see below:

task body fih is
-- local simple data declaration, no tasks.

begin
accept handlerl do

<statementlist>;
end handlerl;
accept handler2 do

<statementlist>;
end handler2;

end fih;

6) The only tasking construct that may be used from the body of an accept statement is
unconditional entry calls. Several unconditional entry calls may appear in the body of an
accept statement but only one entry call must be made during the handling of the interrupts.

7) Any procedures called from the accept body may not use any tasking constructs at all.

8) A given entry must only be accepted once within the body of an FIRH.

9) No exceptions may be propagated out of the task body.

If the restrictions described above are not fulfilled, the program is erroneous and the result of the
execution unpredictable. The compiler cannot and is not checking all the restrictions, but attempts
to perform as many checks of the requirements as possible.

176

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implemenaion Dependent Characteristics

The pragma INTERRUPTrHANDLER with no parameters allows the user to implement
immediate response to exceptions.

FI.2 PMAGMA INTERRUPT-HANDLER for Procedures

Format pragm INTRRUPTHANDLE(procedure-namernte4e'-Ilteral);

Placement The peagma must be placed as a declarative item, in the declarative part,
immediately aft the procedure specification.

Restrictions: The procedure for which pragma INTERRUPTHANDLER applies must fulfill the
following restrictions:

I) The pragma must appear before the body of the procedure.

2) The procedure must not be called anywhere in the application.

3) No tasks may be declared in the body of the procedure.

4) The only tasking construct that may be used from the body of the procedure is
uncoditional entry calls. Several unconditional entry calls may appear in the body of the
p but only one entry cai may be made during the handling of the inerrupt.

5) Any subprograms called from the procedure must not use any tasking constructs at all.

6) The procedure must have no parameten.

7) No exceptions may be propagated out of the procedure.

If the restrictions described above is not fulfilled the program is erroneous and the result of the
execution unp--dictablc. The compiler cannot and is not checking all the restrictions, but attempts
to perform as many checks of the requirements as possible.

The pragma INTERRUPTJHANDLER for procedures defines the named subprogram to be an
inerrupt handler for th interrupt vector entry defined by the integer-literal.

FI.1O PRAGMA NOFLOATINGPOINTS

Format: pragma NOFLOATINGPOINTS(task-id)

Placement: The pragma must be placed as a declarative item, in the declarative part, defining
the task type or object denoted by the task-id.

Restrictions: The task(s) denoted by the task-id must not execute floating-point co-processor
instructions.

This pragma informs the compiler and run-time system that the task will not execute floating point
co-processor instructions. Consequently the context switch needs not save and restore the state of
the floating point co-processor yielding improved performance.

177

DACS 680x0 Bani Ada Cos Compiler System - User's Guide
hpme Depea i

FI.11 PRAGMA SUPERVISOR.TASK

FUmIA pragum SUPERVISOR.TASK

Placemen lhw prapna must be placed immediately after the task declartion of the task
declazing it as a SUPERVISOR-TASK.

Restrictlons: Trhe pgma has no mening if linking with BASIC mode.

This praginma infoans the compiler and ran-tme system that dte task shall ezeazce at the supervisor
privilee level, ail other tasks will execute at user pdivile level whe lnking with SECURE or
SAFE mode,. In BASIC mode all tasks execute at the suprvisor privileg level.

FI.12 PRAGMA ACCESSTYPERETAINJIEAP

Format: pragn• s ACCESSTYPEEAJN-IWAP

Paceme: Tin pragmaT must be placed as a declarative item in the declarative part, immediately
after the pucedure speciflcatiom

Restrictimos: The pragma can only be used when linkdng in BASIC mode.

This pragma suppsses garbage collection of wacess types, when leaving the scope of the access
type declaration

F.2 Implemmntatios-Depmndent Attributes

No impiememation-dependem attribtes are defined.

178

DACS 68W ai Ada Cross Compiler System - User's Guide
Im nmat Dependent Chaacteristcs

F.3 Padkag SYSTEM

package SYSTEM is

type ADDRESS is new INTEGER;
subtype PRIORITY is INTEGER range 1 .. 24;
type NAME is (DACS_680X0);
SYSTEM-NAME: constant NAME :- DACS-680X0;
STORAGE-UNIT: constant :- 8;
NENORYSIZE: constant :- 2#1#E32;
MININT: constant :- -2-147-483-648;
MAXINT: constant :- 2-147-483-647;
MAX-DIGITS: constant :- 15;
MAXMANTISSA: constant :- 31;

FINE-DELTA: constant :- 2#1.0#E-31;
TICK: constant :- 2#1.0#E-14;

type interface-language is (AS,C);

end SYSTEM;

le basic dock period SYSTEMITICK is not utilized by DACS-680x0. The real time between
each successive timer tick will be a mukiplum of SYSTEM.TICK, but the actual time between
each timer tick depends on a given target board and is specified in the User Configurable Code
(UCQ).

FA RWpsentaiou Clauses

The DACS-680z0 fully supports the 'SIZE representation for derived types. The representation
cluses that are accepted for non-dedved types are described in the fonowing subsections.

F4.1 Lmth Clause

Some remarks on imp dependent behavior of length clauses ame necessary:

"* When using the SIZE anibute for discrete types, the maximum value that can be specified
is 32 bits.

"* SIZE is only obeyed for discrete types when the type is a pan of a composite object, e.g.
arrays or records.

"* Using the STORAGESIZE attribute for a collection will set an upper limit on the total
size of objects allocated in this collection. If further allocation is attempted, the exception
STORAGEERROR is raised.

"* When STORAGE-SIZE is specified in a length clause for a task, the process stack area
will be of the specified size.

179

DACS 60x0 Ma Ada Cross Compiler System - User's Guide-mzm~Dependent cted~cs

7U mmurd ,erm m Ckuses

P qM e uel on claus may specify representations in the range of OM M'FIRST
+ 1-DnIE'LAST - 1.

1M.3 Record Rep utadh. Clam

When Msento cuea applied t records the following restrictmo are imposed:

H If the component is a reord or an unpacked array, it must start at a storage urdt boundary
(s bits).

* -A record occupies a integral number of storage units (words) (even though a record may
have fields that only define an odd number of bytes).

* A ncrd may take up a maximum of 2 giga bits.

* A component must be specified with its proper size (in bits), regardless of whether the
component is an ay or not.

SIf a nwn-amy component has a size which equals or exceeds one storage unit 32-bits the
component must start on a storage unit boundary.

* The elements in am army component should always be wholly contained in 32-bits.

If the record type contains components which are not covered by a component clause, they are
allocased consectively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component dauses ame nt otherwise utilized by the compiler.

Pragma PACK on a record type will attempt to pack the components not already covered by a
reprFesentadon clause (perhaps none). This packing will begin with the small scalar components and
lre components will follow in the order specified in the record. The packing begins at the first
stmorage unit after the components with rep nation dauses.

F4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristics:

"* If the declaration of the record type is done at the outermost level in a library package, any
alignment is accepted, otherwise only longword alignments are accepted.

" Any record object declared at the outermost level in a library package will be aligned
according to the alignment clause specified for the type. Record objects declared elsewhere
can only be aligned on a longword boundary. If the record type is associated with a
different alignment, an error message will be issued.

"* If a record type with an associated alignment clause is used in a composite type, the
alignment is required to be longword; an error message is issued if this is riot the case.

180

DACS SONiO D0are Ada Croi Compiler System - User's Guide
bpim ~~Dpendent m stc

VS.q kpltlrnm-Ilap e mames 1w buismeatlo-.Depmdmen Components

Nown deflooi by the campbr.

F.6 AdiresClam.

t, cd*o describes the Implementaton of address clauses and what types of entities may have
as akem specdfed by the ser.

M~ Objects

Adrmes ckase ae supported for scalar and composite objecM whose size can be determined at
compl dmU ft address is specified.

IF. Task Robis

Address chsms m msupported for task entries. The following restuictionm applies:

"* The affected entries mug be defined in a task object only, not a task type.

"- Th entries mus be single and -r m s.

"* The address specified must not denote an hn rupt index which the processor may trap.

"* If the interrupt entry executes floating point co-processor instructions the state of the
co-processor must be saved prior to execution of any floating point instructions, and restored
before the return

The address specified in the address clause denotes the interupt vector index.

F.7 Unchecked Prormnimng

Both UNCHECKED.DEALLOCATION and UNCHECKED-CONVERSION are supported as
indicated below.

17.1 Unchecked Deallocation

Unch dee location is fully supported through the procedure UNCHECKED.DEALLOCATION
as defined in [DoD-83] 13.10.1.

181

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
I Dependent Characteristics

57.2 Uncbedked Conversion

U nnwcd covmaon is fully suppored through the procedure UNCHECKED.CONVERSION as
defined in [DoD-83] 13.10.2. Unchecked conversion is only allowed between objects of the same
"Uie. However, if a scalar type have different sizes (packed and unpacked), unchecked conversion
between such a type and another type is accepted if either the packed or the unpacked size fits
the other type.

F.8 I Outt Packae

In many embedded systems, there is no need for a traditional I/O system, but in order to support
testing and ahdation, DDC-I has developed a small terminal oriented 11O system. This I/O system
consists essentially of EXT.O adapted with respect to handling only a terminal and not file 1/O
(file INO will cause a USE-ERROR to be raised) and a low level package called
TERMINALDRIVER. A BASIC-O package has been provided for convemence puposes,
forming an interface between TEXTIO and TERMINAL-DRIVER as illustrated in the following
figure.

TEXTIO
BASICIO

TERMINAL-DRIVER
(H/W interface)

Figure F.l:

The TERMINALDRIVER package is the only package that is target dependent, i.e., it is the
only package that need be changed when changing communications controllers. The actual body
of the TERMINALDRIVER is written in assembly language, but an Ada interface to this body
is provided. A user can also call the terminal driver routines directly, i.e. from an assembly
language routine. TEXT-1O and BASIC-1O are written completely in Ada and need not be

BASICIO provides a mapping between TEXT.O control characters and ASCII as follows:

TEXTIO ASCII Character

LINE-TERMINATOR ASCI I. CR
PAGE-TERMINATOR ASCII. FF
FILETERMINATOR ASCII.EM (ctrl Z)
NEWLINE ASCII.LF

Table F. 1: Mapping between TEXT-1O and ASCII

182

DACS 680x0 Bare Ada Cum Compiler System - User's Guide
Implementation Dependent Characteristics

The sewvices provided by the terminal driver are:

1) Reading a character from the communicaions port.

2) Writing a character to the communications port.

F1.I Package TEXT-1O

The spwcification of package TEXTIO:

pragma page;
with BASIC.IO;

with IO-EXCEPTIONS;
package TEXTIO is

type FILE-TYPE is 2i"mited private;

type FILE-MODE is (IN-FILE, OUTFILE);

type COUNT is range 0 .. INTEGER' LAST;
subtype POSITIVE-COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:- 0; -- line and page length

-- max. size of an integer output field 2# #
subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBER-_BASE is INTEGER range 2 16;

type TYPE-SET is (LOWER-CASE, UPPER-CASE);

183

DACS 680O0 Bare Ada Cross Compiler Syslem - User's Guide
mplemenionDepn

pragma PAGE;
-- File Management
procedure CREATE (FILE : in out FILE-TYPE;

MODE : in FILE-MODE :-OUT-FILE;
NAME : in STRING :-"";
FORM : in STRING :-""

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILE-MODE;
NAME : in STRING;
FORM : in STRING :-""

procedure CLOSE (FILE : in out FILE.TYPE);
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (FILE : in out FILE-TYPE;

MODE : in FILE-MODE) ;
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;
function NAME (FILE : in FILE-TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE return BOOLEAN;

pragma PAGE:
-- control of default input and output files

procedure SET-INPUT (FILE : in FILE-TYPE);
procedure SET-OUTPUT (FILE : in FILE-TYPE);

function STANDARD-INPUT return FILE-TYPE;
function STANDARD-OUTPUT return FILE-TYPE;

function CURRENT-INPUT return FILE-TYPE;
function CURRENT-OUTPUT return FILE-TYPE;

pragma PAGE;
-- specification of line and page lengths

procedure SETLINELENGTH (FILE in FILE-TYPE;
TO in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILE-TYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

function LINE-LENGTH (FILE : in FILE-TYPE)
return COUNT;

function LINE-LENGTH return COUNT;

function PAGE-LENGTH (FILE : in FILE-TYPE)
return COUNT;

function PAGE-LENGTH return COUNT;

184

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;
-- Column, Line, and Page Control

procedure NEN-LINE (FILE : in FILE-TYPE;
SPACING : in POSITIVE-COUNT :- 1);

procedure NEW-LINE (SPACING : in POSITIVE-COUNT :-1);

procedure SKIP-LINE (FILE : in FILE-TYPE;
SPACING : in POSITIVE-COUNT :- 1);

procedure SKIP-LINE (SPACING : in POSITIVE-COUNT :- 1);

function ENDOFLINE (FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEW-PAGE (FILE : in FILETYPE);
procedure NEW-PAGE;

procedure SKIP-PAGE (FILE : in FILE-TYPE);
procedure SKIP-PAGE;

function ENDOF-PAGE (FILE : in FILE-TYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function ENDOF-FILE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFFILE return BOOLEAN;

procedure SETCOL (FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

procedure SETCOL (TO : in POSITIVECOUNT);

procedure SET-LINE (FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

procedure SET-LINE (TO : in POSITIVECOUNT);

function COL (FILE : in FILE-TYPE)
return POSITIVE.COUNT;

function COL return POSITIVE-COUNT;

function LINE (FILE : in FILE-TYPE)
return POSITIVE-COUNT;

function LINE return POSITIVE-COUNT;

function PAGE (FILE : in FILE-TYPE)
return POSITIVE-COUNT;

function PAGE return POSITIVE-COUNT;

185

DACS 6N0x0 Bare Ada Cros Compiler Sysem - User's Guide
Implemenaion Dependem Characcrisfics

pragma PAGE;
-- Character Input-Output

procedure GET (FILE : in FILE-TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE-TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILE-TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE-TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

procedure GET-LINE (FILE : in FILE-TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET-LINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUT-LINE (FILE : in FILE-TYPE;
ITEM : in STRING);

procedure PUT-LINE (ITEM : in STRING);

186

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
mplnaion Depende Characterstics

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGER-IO is

DEFAULT-WIDTH : FIELD : NUM'WIDTH;
DEFAULT-BASE : NUMBER-BASE :- 10;

procedure GET (FILE : in FILE-TYPE;
ITEM : out NUM;
WIDTH : in FIELD :-0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD :- 0);

procedure PUT (FILE : in FILE-TYPE;
ITEM : in NUM;
WIDTH : in FIELD :- DEFAULT-WIDTH;
BASE : in NUMBER-BASE :- DEFAULTBASE);

procedure PUT (ITEM : in NUM;
WIDTH : in FIELD :- DEFAULT-WIDTH;
BASE : in NUMBER-BASE :- DEFAULTBASE);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBERLBASE : DEFAULTBASE);

end INTEGERIO;

187

DACS 60x0 Bare Ada Cmss Compiler System - User's Guide
Implemenwion Dependent Characteristics

pragma PAGE;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO is

DEFAULTFORE : FIELD : 2;
DEFAULT-AFT : FIELD :-NUM'DIGITS - 1;
DEFAULTMEXP : FIELD : 3;

procedure GET (FILE in FILE-TYPE;
ITEM out NUM;
WIDTH in FIELD : 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD : 0);

procedure PUT (FILE in FILE-TYPE;
ITEM in NUM;
FORE in FIELD : DEFAULT-FORE;
AFT in FIELD : DEFAULT-AFT;
EXP in FIELD :- DEFAULTEXP);

procedure PUT (ITEM in NUM;
FORE in FIELD :-DEFAULT-FORE;
AFT in FIELD :- DEFAULT-AFT;
EXP in FIELD : DEFAULTEXP);

procedure GET (FROM in STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in NUM;
AFT in FIELD - DEFAULT-AFT;
EXP in FIELD : DEFAULTEXP);

end FLOATIO;

188

DACS 680x0 Bam Ada Ctoss Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;

generic
type HUM is delta <>;

package FIXEDIO is

DEFAULT-FORE : FIELD :-NUM'FORE;
DEFAULT-AFT : FIELD : NUM' AFT;
DEFAULTEXP : FIELD :- 0;

procedure GET (FILE in FILE-TYPE;
ITEM out NUM;
WIDTH : in FIELD :- 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD :-0);

procedure PUT (FILE : in FILE-TYPE;
ITEM : in NUM;
FORE : in FIELD :-DEFAULTFORE;
AFT : in FIELD :- DEFAULT-AFT;
EXP : in FIELD : DEFAULT_.EXP);

procedure PUT (ITEM : in NUM;

FORE : in FIELD :-DEFAULT-FORE;
AFT : in FIELD : DEFAULT-AFT;
EXP : in FIELD :- DEFAULT-.EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD :- DEFAULT-AFT;
EXP : in FIELD : DEFAULTEXP);

end FIXEDIO;

189

DACS 6•0z0 Baiu Ada Cwss Compiler System - User's Guide
Imkmmi mDependent Chratristic

pragma PAGE;
-- Generic Package for Input-Output of Enumeration Types

generic
type CHN is (<>);

package ENUMERATIONIO is

DEFAULT-WIDTH : FIELD :- 0;
DEFAULT-SETTING : TYPE-SET :-UPPER-CASE;

procedure GET (FILE : in FILE-TYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE FILE-TYPE;
ITEM in ENUM;
WIDTH in FIELD :- DEFAULT-WIDTH;
SET in TYPE-SET - DEFAULTSETTING);

procedure PUT (ITEM in ENUM;
WIDTH in FIELD :- DEFAULT-WIDTH;
SET in TYPE-SET - DEFAULTSETTING);

procedure GET (FROM in STRING;
ITEM out ENUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in ENUM;
SET in TYPE-SET :- DEFAULTSETTING);

end ENUMERATIONIO;

pragma PAGE;

-- Exceptions

STATUS-ERROR :exception renames IOEXCEPTIONS.STATUSERROR;
MODE-ERROR :exception renames IO-EXCEPTIONS.MODEERROR;
NAME-ERROR :exception renames IOEXCEPTIONS. NAMEERROR;
USE-ERROR :exception renames IO-EXCEPTIONS.USE-ERROR;
DEVICE-ERROR :exception renames IOEXCEPTIONS. DEVICEERROR;
END_.ERROR :exception renames IOEXCEPTIONS.END-ERROR;
DATA-ERROR :exception renames IOEXCEPTIONS. DATA-ERROR;
LAYOUTERROR :exception renames IOEXCEPTIONS.LAYOUTERROR;

pragma page;
private

type FILE-TYPE is
record

FT : INTEGER :- -1;
end record;

end TEXTIO;

190
L

DACS 680x0 Bare Ada Cnoss Compiler System - User's Guide

VLI Parkaep IO_-XCEPTIONS

Ma specificadon of the package O.X(CEPTIONS:

package IO...ECEPTIONS is

STATUSERROR : exception;
NOD-.ZRROR : exception;
NAM-LERROR : exception;
USEERROR : exception;
DEVICE-ERROR : exception;
ENDZRROR : exception;
DATA-ERROR : exception;
LAYOUTERROR : exception;

end IOEXCEPTIONS;

M3 Paka BASIC-1O

Tbe qiecificazoY of package BASICJO:

with IOEXCEPTIONS;

package BASIC-IO is

type count is range 0 .. integer'last;

subtype positive.count is count range 1 .. count'last;

function get-integer return string;

-- Skips any leading blanks, line terminators or page terminators.
-- Then reads a plus or a minus sign if present, then reads according
-- to the syntax of an integer literal, which may be based.
-- Stores in item a string containing an optional sign and an integer
-- litteral.

-- The exception DATA-ERROR is raised if the sequence ofcharacters does
-- not correspond to the syntax described above.

-- The exception END-ERROR is raised if the file terminator is read.
-- (This means that the starting sequence of an integer has not been met)

-- Note that the character terminating the operation must be available
-- for the next get operation.

191

DACS NOW Bat Ad& Cra•s Compl:er Sysmn - User's Guide

function get-real return string;

-- Corresponds to getinteger except that it reads according to the

-- syntax of a real literal, which may be based.

function get-enumeration return string;

-- Corresponds to get-integer except that it reads according to the
-- syntax of an identifier, where upper and lower case letters are
-- equivalent to a character literal including the apostrophes.

function get-item(length : in integer), return string;

-- Reads a string from the current line and stores it in item;
-- i the remaining number of characters on the current line is
-- less than length then only these characters are returned.
-- f•oe line terminator is not skipped.

procedure put.item(item : in string);

-- If the length of the string is greater than the current maximum line
-- linelength the exception LAYOUT-ERROR is raised.

-- If the string does not fit on the current line a line terminator is
-- output. Then the item is output.

-- Line and page lengths - ARM 14.3.3.

procedure set.line-length(to : in count);

procedure set.page.length (to : in count);

function line-length return count;

function page-length return count;

-- Operations on columns, lines and pages - ARM 14.3.4.

procedure new-line;

procedure skip.line;

function end-of-line return boolean;

procedure new-page;

procedure skip-page;

192

DACS 6O8O Due Ads Cmu Compile Sysem - Use's Guide

hmmm.•om 4 omawhtics

function end.of-page return boolean;

function end-of-file return boolean;

procedure set-col (to in positive-count);

procedure set-line (to in positive-count);

function col return positive-count;

function line return positive-count;

function page return positive.count;

-- Character and string procedures.
-- Corresponds to the procedures defined in ARM 14.3.6.

procedure get.character(item out character);

procedure get.string(item: out string);

procedure get.line(item : out string;
last : out natural);

procedure put.character(item : in character);

procedure put.string(item : in string);

procedure put-line(item : in string);

-- exceptions:

USE-ERkOR : exception renames IO-EXCEPTIONS.USEERROR;
DEVICEERROR : exception renames IO-EXCEPTIONS.DEVICEERROR;
END-ERROR : exception renames IO-EXCEPTIONS.ENDERROR;
DATAZRROR exception renames IO-EXCEPTIONS.DATAERROR;
LhYOUTERROR : exception renames IO-EXCEPTIONS.LAYOUTERROR;

end 3&SZC_IO;

193

DACS 68Wi Bare Ada Cmss Coimpiler Systm -User's Giuide-
~enttk Dew-n 0hmce

IM4 Psekap TUMKINAL-DRIVER

The wecdflcadoua Of package TERMINAL.DRIVER:

package terminal-driver is

procedure put...character (ch :character);
procedure flush;

function get..character return character;

procedure purge;

private

pragma interface (AS, put-.character);

pragma interfaCe-sPelling (put.-character, "Ada-UCC G$Put~yte");

pragma interface (A, get-.character);

pragma interfaCe-spelling (geL-character, "Ada-.ACC-.G$GetByte");

pragmna interface (AS, flush);

pragma interfaCe-3pelling(flush, "Ada-.UCC...G$FushOutput");

pragma interface (AS, purge);

pragma interface-3.pelling(purge, "Ada-.UCC-.G$Purgelraput");

pragma initialize ("Ada-UCC..G$InitIO");
pragma rundown ("Ada..UCC-.GSC1oseIO");

end termninal-~driver;

MS. Packag SEQUENTIL4IO

As files ane no supported, fte subptograms in this package will raise USE-ERROR or
STATUS-ERROR. The specification of package SEQUENTIAL-IO:

-- Source code for SEQUENTIAL-10

pragma PAGE;*

with 1O0.EXCEPTIONS;

generic

type ELEMENT-TYPE is private;

194

DACS 68)z0 Bm Ada Czo Compiler Symm - User's Guide
I 'v I--mia ENendent (3macterics

package SEQUENTIAL.IO is

type FILL.TYPE is limited private;

type FILLEMODE is (IN-FILE, OUTFILE);

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILL.TYPE;
MODE : in FILE.MODE -- OUT-FILE;
NAME : in STRING :- "";

FORK : in STRING :- "");

procedure OPEN (FILE : in out FILLTYPE;
MODE : in FILE-MODE;
NAME : in STRING;
FORM : in STRING :- "");

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE-TYPE;
MODE : in FILE-MODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STR7NG;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

pragma PAGE;
-- input and output operations

procedure READ (FILE : in FILE-TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENTTYPE);

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

195

DACS 680&0 But Ada Cross Comwler ysmem - User's Guide-on Depende Chactiics

pragma PAGE;
-- exceptions

STATUS-ERROR :exception renames IOEXCEPTIONS.STATUS-ERROR;
MODEERROR :exception renames IOEXCEPTIONS. MODEERROR;
WAME_5RROR :exception renames IOEXCEPTIONS.NAMEERROR;
USL.ERROR :exception renames IOEXCEPTIONS.USEERROR;
DIVICE-ERROR :exception renames IOEXCEPTIONS.DEVICE-ERROR;

ND._ERROR : exception renames IO_.EXC EPTIONS.ENDERROR;
DATA.BRROR :exception renames IO.-XCEPTIONS .DATA-ERROR;

pragma PAGE;
private

type FILE-TYPE is new INTEGER;

end SEQUENTIAL-IO;

M16 Packa DMICTIO

As files ate not supported, the subpuograms in this package will ra USEERROR or
STATUS_.EROR. The specification of package DIRECTI-O:

pragma PAGE;

with IOEXCEPTIONS;

generic

type ELEMENT_-TYPE is private;

package DIRECT-IO is

type FILE-TYPE is limited private;

type FILEMODE is (IN-FILE, INOUTFILE, OUTFILE);

type COUNT is range 0..2-147-483-647;
subtype POSITIVE-COUNT is COUNT range 1..COUNT'LAST;

196

DACS 680x0 Bare Ada Cwss Compiler System - User's Guide
Implementation Depetdem Characteristics

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE-TYPE;
MODE : in FILE-MODE :- INOUTFILE;
NAME : in STRING :- "";
FORM : in STRING :- "");

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILE-MODE;
NAME : in STRING;
FORM : in STRING :m --);

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE-TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILE-TYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

197

DACS 680M0 Bare Ada Cros Compe System - User's Guide
mplen Dependent iaractis

prag•a PAGE;
-- input and output operations

procedure READ (FILE : in FILE-TYPE;
ITEM : out ELEMENT-TYPE;
FROM : in POSITIVECOUNT);

procedure READ (FILE : in FILETYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENT-TYPE;
TO : in POSITIVECOUNT);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENTTYPE);

procedure SETINDEX(FILE : in FILETYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILE-TYPE) return POSITIVE-COUNT;

function SIZE (FILE : in FILE-TYPE) return COUNT;

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

pragma PAGE;
-- exceptions

STATUS-ERROR : exception renames IOEXCEPTIONS.STATUSERROR;
MODEERROR : exception renames IO-EXCEPTIONS.MODE-ERROR;
NAME-ERROR : exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR : exception renames IOEXCEPTIONS.USEERROR;
DEVICE-.ERROR : exception renames IOEXCEPTIONS.DEVICE-ERROR;
ENDERROR : exception renames IOEXCEPTIONS.ENDERROR;
DATA-ERROR : exception renames IOEXCEPTIONS.DATAERROR;

pragma PAGE;
private

type FILE-TYPE is new INTEGER;

end DIRECTIO;

F. Padckg CALENDAR

Packagp CALENDAR is as defined in [DoD-83] section 9.6, except for a new procedure
SETTIME, which has been added to die package. SETTIME allows setting of TIME for the
dursaton of the executing program. SETTIME parameters follow the same conventions as the
parnetem for SPLIT. The specification of package CALENDAR:

198

DACS 68x0 Bam Ada Cross Compiler Systm - User's Guide
Implanauion Dependaent Chacteristics

PRAGHA PAGE;

PACKAGE calendar IS

TYPE Time IS PRIVATE;

SUBTYPE Year-number IS Integer RANGE 1901..2099;
SUBTYPE Month-number IS Integer RANGE 1..12;
SUBTYPE Day-number IS Integer RANGE 1..31;
SUBTYPE Day-duration IS Duration RANGE 0.0..86-400.0;

FUNCTION clock RETURN Time;

FUNCTION year(date: Time) RETURN Year-number;
FUNCTION month(date: Time) RETURN Month-number;
FUNCTION day(date: Time) RETURN Day-number;
FUNCTION seconds (date: Time) RETURN Day-duration;

PROCEDURE split(date: IN Time;
year: OUT Year-number;
month: OUT Month.number;
day: OUT Day-number;
seconds: OUT Day-duration);

FUNCTION time.of (year: Year.nuuber;
month: Month-number;
day: Day-number;
seconds: Day-duration :- 0.0) RETURN Time;

FUNCTION "+" (left: Time;
right: Duration) RETURN Time;

FUNCTION "+" (left: Duration;
right: Time) RETURN Time;

FUNCTION ... (left: Time;
right: Duration) RETURN Time;

FUNCTION ... (left: Time;
right: Time) RETURN Duration;

FUNCTION "<" (left,right: Time) RETURN Boolean;
FUNCTION "<-" (left, right: Time) RETURN Boolean;
FUNCTION ">" (left, right: Time) RETURN Boolean;
FUNCTION ">-" (left,right: Time) RETURN Boolean;

PROCEDURE set.time (year : IN Year-number;
month : IN Month-number;
day : IN Day-number;
seconds : IN Day-duration);

TIME-ERROR: Exception; -- ... can be raised by
-- time-of , "+" and "-"

PRIVATE

END calendar;

199

DACS 680x0 Bm Ada Cross Compiler Sysem - User's Guide
Implementation Dependent Characteristics

F.10 Madaue Code Inurtions

Mah code insertions ae allowed using the inmuctions defined in package MACHINE-CODE.
All arguments given in the code statement aggmga must be static.

The machine lanuag defined in package MACHINE-CODE is not 680x0 assembler, but rather
Abstrm A-code which is an intermediate language used by the compiler.

200

